СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩИХ ПРОВОДОВ НА ОСНОВЕ НИОБИЙ-ТИТАНОВЫХ СПЛАВОВ Российский патент 2000 года по МПК H01B13/00 H01B12/00 

Описание патента на изобретение RU2159474C1

Изобретение относится к области электротехники низких температур и может использоваться при производстве сверхпроводящих проводов, предназначенных для работы при гелиевых температурах в магнитных системах ускорителей заряженных частиц, накопителей энергии, томографов, криотурбогенераторов и криомоторов.

Известен способ получения сверхпроводящих проводов, включающий операции сборки, горячее выдавливание, холодную деформацию и повторяющиеся циклы холодной деформации с отжигами. Технология изготовления сверхпроводящих проводов в значительной степени определяется требованиями к этим проводам по размерам сечения, длины, величины критического тока, потерям при перемагничивании [1]. В результате технологических операций, связанных с повторяющимися циклами холодной деформации и отжигами, критическая плотность тока в проводе возрастает. Так для провода сечением 2,5•3,5 мм, изготовленного в промышленных условиях, критическая плотность тока составила в поле 5 Тл 0,68•105 А/см2 [2].

Наиболее близким способом [3] получения сверхпроводящих проводов в стабилизирующей оболочке из меди и его сплавов на основе деформируемых, например, ниобий-титановых сплавов является способ, который состоит в следующем. Слиток из ниобий-титанового сплава помещают в стакан из меди или его сплава, герметизируют, нагревают до температуры 510-670oC, выдавливают на пруток. После выдавливания передний и задний концы прутка, имеющие искаженную геометрию конструкции провода - "концевые эффекты", отрезают и пруток деформируют вхолодную до получения требуемого размера. Затем холоднодеформированный пруток разрезают на мерные части, которые помещают в стакан, проводят герметизацию, нагрев, выдавливание в многоволоконный пруток. При необходимости изготовления проводов с большим числом ниобий-титановых волокон (порядка нескольких тысяч) вышеизложенные операции изготовления композитной заготовки с помещением в нее холоднодеформированных прутков повторяются. После удаления "концевых эффектов" выдавленный пруток подвергают обработке, состоящей из повторяющихся циклов холодной деформации с отжигами при температуре 375oC в течение 20 часов. Далее проводят заключительную до 98% холодную деформацию до получения провода заданного сечения. Этот способ изготовления сверхпроводящих проводов на основе ниобий-титановых сплавов обладает рядом недостатков:
1. Способ-прототип изготовления сверхпроводящих проводов не позволяет получить провода с высокими значениями критической плотности тока, особенно на проводах сечением более 15-20 мм2, т.к. исключает возможность разместить при оптимальных предварительных деформациях достаточное количество отжигов. Ниобий-титановый сплав является пересыщенным β-твердым раствором. Распад ниобий-титанового сплава, приводящий к возрастанию его токонесущей способности в процессе отжигов, инициируется внутренними напряжениями, создаваемыми холодной деформацией. Поэтому одним из широко используемых приемов повышения критической плотности тока является увеличение числа циклов "отжиг-деформация". Практика производства сверхпроводящих проводов показывает, что перед отжигами необходима оптимальная величина холодной деформации, менее которой последующий отжиг не инициирует распад ниобий-титанового сплава. Однако, возможность выбора величины холодной деформации в этом оптимальном диапазоне деформации с последующими отжигами, т.е. числа циклов "отжиг-деформация", определяется соотношением диаметра выдавленного прутка и конечного диаметра провода. При производстве сверхпроводящих проводов горячее выдавливание сборок проводится на широко распространенных 630 тс прессах, что позволяет использовать сборки диаметрами не более 95-130 мм. На таких выдавленных прутках общая холодная деформация для проводов, например, сечением 3,5•2 мм или 4•7 мм составляет 99,33% и 99%, соответственно. Из-за ограниченной величины общей холодной деформации от выдавленного прутка до конечного размера провода невозможно увеличить число циклов "отжиг-деформация" при их оптимальном расположении, что исключает возможность достижения высокого уровня критической плотности тока в сверхпроводнике.

2. Нагрев последней композитной заготовки под выдавливание до температуры 510-670oC приводят к росту ячеистой структуры ниобий-титанового сплава, полученной предшествующей холодной деформацией, полному снятию внутренних напряжений, растворению ранее выделившейся α-фазы, т.е. уничтожению факторов, обуславливающих распад ниобий-титанового сплава и повышение токонесущей способности провода.

3. Для изготовления сверхпроводников поперечных сечений до 20-28 мм2 часто требуются провода минимальной длины около 1000 метров и весом более 100 кг, для чего необходимо выдавливать сборки диаметром более 250 мм на уникальном оборудовании, как, например, прессе с усилием до 7000 тс.

4. После горячего выдавливания последней сборки передний и задний концы прутка с искаженной геометрией поперечного сечения провода удаляются, что составляет порядка 10% от веса выдавленного конечного прутка и удорожает стоимость провода.

Вышеперечисленные недостатки отсутствуют в предлагаемом способе получения сверхпроводящих проводов на основе ниобий-титановых сплавов.

1. За счет размещения циклов деформации с промежуточными отжигами при их оптимальном расположении на прутках, вставляемых в последнюю композитную заготовку, достигается общее увеличение числа циклов "отжиг-деформация" при их оптимальном расположении в процессе изготовления провода, что обеспечивает возможность достижения высокого уровня критической плотности тока в сверхпроводнике и подготавливает условия для обеспечения металлургической связи в последней композитной заготовке при последующем отжиге.

2. Исключение нагрева последней сборки приводит к сохранению: мелкоячеистой структуры ниобий-титанового сплава, полученной предшествующей холодной деформацией; внутренних напряжений, ранее выделившейся α- фазы, т.е. факторов, обуславливающих распад ниобий-титанового сплава и повышение токонесущей способности провода.

3. Возможно изготовление сверхпроводников поперечных сечений до 20-28 мм2, весом более 100 кг с использованием широко распространенного оборудования, как, например, пресс с усилием до 630 тс.

4. В прутке, получаемом из последней композитной заготовки, отсутствуют концы с искаженной геометрией поперечного сечения.

Технической задачей, решаемой с помощью предлагаемого изобретения, является получение сверхпроводящих проводов из ниобий-титановых сплавов больших поперечных сечений до 20-28 мм2 и длин с критической плотностью тока в поле 5 Тл в 2,5-3 раза выше, чем по способу прототипа. Решение поставленной задачи достигается тем, что в предлагаемом способе получения сверхпроводящих проводов на основе ниобий-титановых сплавов заготовки из ниобий-титанового сплава размещают в стакан из меди или сплава на основе меди, проводят герметизацию, горячее выдавливание и холодную деформацию с получением прутка, резку прутка на мерные части, последующую сборку в стакан из меди или сплава на основе меди мерных прутков до получения в последней композитной заготовке требуемого числа ниобий-титановых волокон, причем, прутки, размещаемые в последнюю композитную заготовку, предварительно деформируют вхолодную с промежуточными отжигами при температуре 385-420oC в течение 10-100 часов, после чего последнюю композитную заготовку вхолодную деформируют до такой величины суммарной деформации, чтобы выбрать все имеющиеся зазоры и дать не менее чем 10% деформации, затем проводят дополнительный отжиг, при температурно-временных режимах, соответствующих режиму промежуточного отжига, проводят холодные деформации с отжигами и заключительную деформацию до получения провода требуемых размеров.

Пример конкретного выполнения.

Заготовка из Nb-50 мас.% Ti сплава по цилиндрической поверхности обертывали Nb листом, помещали в медный стакан, герметизировали в вакууме, полученную заготовку нагревали до температуры 580oC в течение 1,5 часов и выдавливали на пруток на 630 тс прессе. После холодного волочения получали шестигранный профиль, от которого отрезали 55 мерных прутков, помещали в медный стакан, герметизировали в вакууме, полученную композитную заготовку нагревали до температуры 580oC в течение 1,5 часов и выдавливали на пруток. 55-волоконный пруток деформировали вхолодную на шестигранник под ключ 6 мм с деформациями 50% и промежуточными отжигами в течение 12 часов при температуре 385oC. Затем отрезали 54 мерных прутка и вместе с медным шестигранником помещали в медную трубу с внешним диаметром 61 мм, получая последнюю композитную заготовку. Исходя из конкретных размеров медного стакана и вставленных прутков определяли величину деформации, необходимую для устранения всех зазоров внутри последней композитной заготовки. В нашем конкретном случае она составляла 11%. С учетом дополнительной 10% деформации, обеспечивающей возможность осуществления металлургической связи элементов композитной заготовки при последующем отжиге, суммарная деформация должна быть не менее 21%. Исходя из технологических соображений суммарная холодная деформация была назначена около 30%. Передний конец последней композитной заготовки подсоединяли со специально изготовленной стальной захваткой и проводили волочение на цепном стане за несколько проходов до диаметра 48 мм. Следует отметить, что в прутке диаметром 48 мм отсутствовали концы с искаженной геометрией поперечного сечения, присущие прототипу. Пруток подвергали дополнительному отжигу при температуре 385oC 12 час, обеспечивающему металлургическую связь элементов композитной заготовки, и затем путем холодной деформации с отжигами по 12 часов при температуре 385oC в диапазоне деформаций 35-65% и заключительной деформации были изготовлены прямоугольные провода сечением 3,5•2 мм, 4•7 мм. В результате определений критической плотности тока в поле 5 Тл были получены следующие данные:
для провода сечением 2•3,5 мм - 2,1•105 А/см2;
для провода сечением 4•7 мм - 1,5•105 А/см2.

Аналогичные результаты были получены при температурах промежуточного отжига 420oC, при более высоких температурах промежуточного отжига отмечалась повышенная обрывность провода. При температурах промежуточного отжига менее 385oC не достигалась металлургическая связь элементов холоднодеформированной последней композитной заготовки, что приводило к браку.

Таким образом, в результате перечисленных операций осуществления способа получены на стандартном оборудовании провода с критической плотностью тока в поле 5 Тл в 2,5-3 раза выше, чем по способу - прототипу:
критические плотности тока в поле 5 Тл в способе-прототипе составили 0,68•105 А/см2 [2], по предлагаемому способу для провода сечением 2•3,5 мм - 2,1•105 А/см2; для провода сечением 4•7 мм - 1,5•105 А/см2.

Была разработана и осуществлена технология получения последней композитной заготовки длиной до 6 метров и весом до 150 кг. Предлагаемый способ может быть использован для изготовления проводов и малых значений площади поперечного сечения с повышенной токонесущей способностью.

Источники информации:
1. "Металловедение и технология сверхпроводящих материалов". Под редакцией С.Фонера, Б. Шварца, М.: "Металлургиздат", 1987, стр. 231.

2. Глебов И.А. "Первая машина испытана", журнал "Химия и жизнь", N 12, 1981 г., стр.6.

3. "Superconductor material science metallurgy, fabrication and applications", edited by Simon Fornez, B.B. Schwartz, Plenum Press, 1981, рр. 303 - прототип.

Похожие патенты RU2159474C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ NbTi СПЛАВА 1999
  • Салунин Н.И.
  • Губкин И.Н.
  • Ведерников Г.П.
  • Беляев В.С.
  • Плашкин Э.И.
RU2157012C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ NBSN 2000
  • Плашкин Э.И.
  • Малафеева О.В.
  • Салунин Н.И.
  • Шиков А.К.
  • Ведерников Г.П.
  • Воробьева А.Е.
  • Силаев А.Г.
  • Дергунова Е.А.
  • Осколков Е.А.
  • Маракулин А.В.
RU2182736C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ NBSN 1999
  • Плашкин Э.И.
  • Никуленков Е.В.
  • Салунин Н.И.
  • Шиков А.К.
  • Ведерников Г.П.
  • Беляев В.С.
  • Малафеева О.В.
  • Воробьева А.Е.
  • Силаев А.Г.
RU2152657C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ NB*003SN 1994
  • Никулин А.Д.
  • Шиков А.К.
  • Силаев А.Г.
  • Воробьева А.Е.
  • Давыдов И.И.
  • Чукин А.М.
  • Малафеева О.В.
  • Панцырный В.И.
  • Хлебова Н.Е.
  • Беляков Н.А.
  • Мареев К.А.
RU2069399C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОЖИЛЬНОГО СВЕРХПРОВОДЯЩЕГО ПРОВОДА НА ОСНОВЕ СОЕДИНЕНИЯ NB*003SN 1990
  • Никулин А.Д.
  • Шиков А.К.
  • Воробьева А.Е.
  • Давыдов И.И.
  • Чукин А.М.
  • Беляков Н.А.
RU2088992C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ СОЕДИНЕНИЙ ДЛЯ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ 1999
  • Шиков А.К.
  • Акимов И.И.
  • Раков Д.Н.
  • Докман О.В.
  • Круглов В.С.
RU2170969C2
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ NBSN 1997
  • Шиков А.К.
  • Панцырный В.И.
  • Воробьева А.Е.
  • Судьев С.В.
  • Хлебова Н.Е.
  • Малафеева О.В.
  • Россихин В.А.
RU2134462C1
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО МНОГОВОЛОКОННОГО ЛЕГИРОВАННОГО ПРОВОДА НА ОСНОВЕ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ NB*003SN 1990
  • Никулин А.Д.
  • Шиков А.К.
  • Воробьева А.Е.
  • Силаев А.Г.
  • Чукин А.М.
  • Беляков Н.А.
RU2088993C1
СПОСОБ ПОЛУЧЕНИЯ ПЛОСКОГО СВЕРХПРОВОДНИКА 2000
  • Шиков А.К.
  • Воробьева А.Е.
  • Акимов И.И.
  • Емельянов А.П.
  • Докман О.В.
RU2207641C2
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ А-15 1988
  • Никулин А.Д.
  • Шиков А.К.
  • Давыдов И.И.
  • Воробьева А.Е.
  • Титов В.В.
  • Чукин А.М.
RU2088991C1

Реферат патента 2000 года СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩИХ ПРОВОДОВ НА ОСНОВЕ НИОБИЙ-ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к электротехнике низких температур и может использоваться при производстве сверхпроводящих проводов, предназначенных для работы при гелиевых температурах в магнитных системах ускорителей заряженных частиц, накопителях энергии, томографах, криотурбогенераторах и криомоторах. Предложен способ получения сверхпроводящих проводов на основе ниобий-титановых сплавов, включающий размещение в стакан из меди или сплава на основе меди заготовки из ниобий-титанового сплава, герметизацию, горячее выдавливание и холодную деформацию с получением прутка, резку прутка на мерные части, последующую сборку в стакан из меди или сплава на основе меди мерных прутков до получения в последней композитной заготовке требуемого числа ниобий-титановых волокон и проведение холодных деформаций, отжигов и заключительную деформацию; при этом прутки, размещаемые в последнюю композицию заготовку, предварительно деформируют вхолодную с промежуточными отжигами при температуре 385-420oC в течение 10 - 100 ч, после чего последнюю сборку вхолодную деформируют до такой величины суммарной деформации, чтобы выбрать все имеющиеся зазоры и дать не менее чем 10% деформацию, затем проводят дополнительный отжиг при температурно-временных режимах, соответствующих режиму промежуточного отжига, и последующие холодные деформации с отжигами до получения провода требуемого сечения. Способ обеспечивает повышение критической плотности тока и токонесущей способности проводов.

Формула изобретения RU 2 159 474 C1

Способ получения сверхпроводящих проводов на основе ниобий-титановых сплавов, включающий размещение в стакан из меди или сплава на основе меди заготовки из ниобий-титанового сплава, герметизацию, горячее выдавливание и холодную деформацию с получением прутка, резку прутка на мерные части, последующую сборку в стакан из меди или сплава на основе меди мерных прутков до получения в последней композитной заготовке требуемого числа ниобий-титановых волокон и проведение холодных деформаций, отжигов и заключительной деформации, отличающийся тем, что прутки, размещаемые в последнюю композитную заготовку, предварительно деформируют вхолодную с промежуточными отжигами при температуре 385 - 420oС в течение 10 - 100 ч, после чего последнюю композитную заготовку вхолодную деформируют до такой величины суммарной деформации, чтобы выбрать все имеющиеся зазоры и дать не менее чем 10% деформацию, затем проводят дополнительный отжиг при температурно-временных режимах, соответствующих режиму промежуточного отжига.

Документы, цитированные в отчете о поиске Патент 2000 года RU2159474C1

Superconductor material science metallurgy, fabrication and applications, edited by Simon Fornez, B.B.Schwartz, Plenum Press, p.303
RU 95100565 A1, 27.11.1996
СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ МНОГОЖИЛЬНОЙ КОМПОЗИТНОЙ ЗАГОТОВКИ 1993
  • Никулин А.Д.
  • Шиков А.К.
  • Силаев А.Г.
  • Воробьева А.Е.
  • Давыдов И.И.
  • Вождаев Л.И.
RU2050605C1
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1

RU 2 159 474 C1

Авторы

Зеленский Г.К.

Плашкин Э.И.

Никуленков Е.В.

Салунин Н.И.

Ведерников Г.П.

Осколков Е.А.

Маракулин А.В.

Даты

2000-11-20Публикация

2000-01-14Подача