Изобретение относится к атомной технологии и касается способов переработки железо- и урансодержащих растворов, получаемых в результате дезактивации радиоактивного металлического оборудования растворами различных кислот.
В настоящее время в практике дезактивации все более широкое применение находят однорастворные сернокислотные методы отмывки отработанного оборудования и многократные использования полученного моечного раствора после разделения урана и железа и вывода урана из раствора сорбционным методом, что позволяет значительно сократить количество радиоактивных отходов.
Известен ряд способов извлечения урана из сернокислых растворов. Так, в работе [патент США N 4026987, С 01 G 43/00, 1977 г.] улучшен способ извлечения урана из сернокислого выщелачивающего раствора сорбцией урана в виде анионного сульфатного комплекса слабоосновной анионообменной аминосмолой. По данным Плаксина и Тэтару [Плаксин И.Н., Тэтару С.А Гидрометаллургия с применением ионитов. М., Металлургия, 1964, 282 с.] ионы урана (VI) из сульфатных растворов сорбируются анионитами различной основности. Однако во всех случаях наблюдается неселективная сорбция урана, т.к. вместе с ураном сорбируются и ионы железа (III), которые также находятся в анионной форме. Для их разделения и очистки урана от железа требуются дополнительные технологические приемы, например различные вытеснительные промывки, что значительно усложняет технологическую схему извлечения урана и является существенным недостатком этого процесса.
Наиболее близким к предлагаемому изобретению является способ [патент США N 4427639, С 01 G 43/00, 1984 г. (прототип)] сорбционного извлечения урана из раствора, содержащего небольшое количество ионов урана, а также в качестве нежелательного компонента - ионы железа (III). Этот раствор пропускают через сорбционную колонну, заполненную смолой, имеющей сродство к комплексным сульфатным анионам урана. На смоле сорбируются ионы урана совместно с ионами железа (III) в виде комплексных анионов. Из колонны выводят раствор (сорбат), обедненный ионами урана и содержащий несорбированные ионы железа (III).
Затем смолу, насыщенную ионами урана и частично ионами железа, удаляют из колонны и помещают в камеру концентрирования, где через смолу пропускают с регулируемой скоростью раствор, обогащенный ионами урана и обедненный ионами железа (III) при pH среды, обеспечивающим увеличение отношения ионов урана (VI) к ионам железа (III) в смоле за счет ионообмена между раствором и смолой. В результате происходит насыщение смолы ураном, который вытесняет ионы железа. Таким образом, осуществляется разделение ионов урана (VI) и ионов железа (III).
Из камеры концентрирования выводится отработанный раствор, который рециклируют в исходный раствор, а смолу, насыщенную ураном, направляют в колонну элюирования урана.
Недостатком этого способа является то, что извлечение урана и его отделение от железа достигается в результате использования длительной и трудоемкой схемы, связанной с перегрузками смол, изменениями потоков растворов, что снижает эффективность извлечения урана.
Технической задачей, решаемой изобретением, является устранение указанных недостатков и повышение степени извлечения урана и очистки урана от железа.
Решение поставленной задачи, при одновременном упрощении процесса, обеспечивается тем, что при осуществлении способа сорбционного извлечения урана и его отделении от ионов железа с использованием анионообменных смол с последующим извлечением урана из смолы, сорбцию урана проводят из сернокислого раствора, содержащего уран в четырех-, а железо в двухвалентном состояниях. В случае переработки растворов после длительной выдержки, в них предварительно вводят восстановитель. В качестве восстановителя и для стабилизации пары уран (IV) - железо (II) перед сорбцией добавляют сульфит натрия в количестве 0,045-0,09 г на 1 г железа. Сорбцию урана проводят на низкоосновном анионите типа АН-31 в SO4 - форме из 1 - 3 мас.% растворов серной кислоты с последующим извлечением урана из смолы раствором азотной кислоты 2-2,5 моль/л.
Благодаря этому достигается достаточно полное извлечение ионов урана (IV) из растворов и его отделение от ионов железа (II), которое не образует комплексных сульфатных анионов, и обеспечивается рециклирование сернокислого раствора на многократное использование.
Отработанный раствор (сорбат), содержащий ионы железа (II) после многократного использования в качестве дезактивирующего раствора при отмывке металла от радионуклидов и очищенный практически полностью от ионов урана направляется на коагуляцию для очистки водно-хвостовых растворов от радионуклидов, где железо (II) используется как коагулянт.
Пример.
Через колонну с анионитом АН-31 (10 мл), предварительно переведенную перед сорбцией в SO4-форму, в динамических условиях при комнатной температуре пропускают по 200 мл исходного раствора (полученного от мойки металлических образцов загрязненного оборудования), содержащего уран (IV) - 1,57 г/л, железо (II) - 10,9 г/л при концентрации серной кислоты в растворе 1-3 мас.%. При извлечении урана и его очистки от железа по известному способу (опыт I) ионы урана и железа находились в шести- и трехвалентном состоянии соответственно. В опытах II и III ионы урана присутствовали в четырех-, а ионы железа в двухвалентном состояниях, но в опыте III для стабилизации пары уран (IV) - железо (II) перед сорбцией дополнительно вводили в раствор восстановитель - сульфит натрия в количестве 0,045-0,09 г на 1 г железа. Время контакта раствора со смолой составляло 20-30 мин колоночный объем.
Извлечение урана из смолы осуществляли раствором азотной кислоты 2,0-2,5 моль/л.
Результаты представлены в таблице.
Таким образом, по сравнению с известным предлагаемый способ обеспечивает высокую степень извлечения урана из раствора и, кроме того, позволяет получить глубокую очистку от железа. Так, сорбция урана в присутствии восстановителя сульфита натрия 0,09 г на 1 г железа проходит на 99,97 %. Коэффициент очистки урана от железа при этом составил более 10000. Получаемый побочный продукт - сорбат сернокислого железа (закисного) чистого по урану может быть использован в качестве реактива, например, в процессе коагуляции для очистки водно-хвостовых растворов от радионуклидов в радиохимическом производстве.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ РУТЕНИЯ ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ НИКЕЛЯ | 1996 |
|
RU2098873C1 |
СПОСОБ ХИМИЧЕСКОГО РАЗДЕЛЕНИЯ ИЗОТОПОВ УРАНА | 1997 |
|
RU2120329C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД | 2011 |
|
RU2493279C2 |
СПОСОБ ИОНООБМЕННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ И ПУЛЬП | 2004 |
|
RU2259412C1 |
ПИРИДИНИЕВЫЙ ИОНИТ ДЛЯ СОРБЦИИ УРАНА ИЗ РАСТВОРОВ И ПУЛЬП | 2008 |
|
RU2385885C1 |
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ РАСТВОРОВ И ПУЛЬП | 2002 |
|
RU2226177C2 |
Анионит для извлечения урана и способ его получения | 2023 |
|
RU2820543C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНЕЦИЯ | 1997 |
|
RU2132552C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОСТАТКОВ ДОМАНИКОВЫХ ОБРАЗОВАНИЙ | 2013 |
|
RU2547369C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ РУД | 2006 |
|
RU2326177C1 |
Изобретение относится к атомной технологии и касается способов переработки железо- и уранcодержащих растворов, получаемых в результате дезактивации радиоактивного металлического оборудования растворами различных кислот. Проводят сорбцию урана из сернокислого раствора, содержащего уран в четырех-, а железо - в двухвалентном состояниях. В случае переработки растворов после длительной выдержки в них предварительно вводят восстановитель. В качестве восстановителя и для стабилизации пары уран (IV) - железо (II) перед сорбцией добавляют сульфит натрия в количестве 0,045-0,09 г на 1 г железа. Сорбцию урана проводят на низкоосновном анионите типа АН-31 в SO4 - форме из 1-3 мас.% растворов серной кислоты. Уран из смолы извлекают раствором азотной кислоты 2-2,5 моль/л. Достигается достаточно полное извлечение ионов урана (IV) из растворов и его отделение от ионов железа (II), которое не образует комплексных сульфатных анионов и обеспечивается рециклирование сернокислого раствора для многократного использования. 6 з.п.ф-лы, 1 табл.
US 4427639 A, 24.01.1984 | |||
Способ формирования динамической нагрузки испытуемого изделия и устройство для его осуществления | 1987 |
|
SU1430776A1 |
Многодиапазонная радиочастотная идентификационная метка на поверхностных акустических волнах | 2015 |
|
RU2609012C1 |
ГАЛКИН Н.П | |||
и др | |||
Технология урана | |||
- М.: Атомиздат, 1964, с.136-158 | |||
ЛАСКОРИН Б.Н | |||
Химия урана | |||
- М.: Наука, 1981, с.59-67 | |||
ЕГОРОВ Е.В., МАКАРОВА С.Б | |||
Ионный обмен в радиохимии | |||
- М.: Атомиздат, 1971, с.112-122 | |||
ROBERT C | |||
MERRITT | |||
The extractive metallurgy of uranium, Colorado school of mines research institute, 1971, p.142-150. |
Авторы
Даты
2000-11-27—Публикация
1999-06-08—Подача