СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД Российский патент 2013 года по МПК C22B34/22 C22B34/34 C22B60/02 C22B59/00 C22B3/24 

Описание патента на изобретение RU2493279C2

Изобретение относится к области гидрометаллургии, а именно, к способам извлечения редких и радиоактивных элементов.

Известен способ концентрирования урана из разбавленных растворов, при котором осуществляют сорбцию урана анионитами, отмывку анионита от примесей, донасыщение анионита ураном путем контакта его с частью уранового десорбата, десорбцию урана кислотно-солевыми растворами и осаждение из товарного десорбата пероскида урана пероксидом водорода (патент RU №2404126, МПК C01G 43/00, опубл. 20.11.2010).

Недостатком способа является невозможность селективного отделения урана от анионных примесей, снижение интенсивности сорбционного процесса.

Известен способ селективного извлечения урана из руд, при котором руду подвергают после измельчения выщелачиванию с получением пульпы при pH 4.2-2.2 и далее при pH 4.6-2.0 процесс выщелачивания совмещают с противоточной сорбцией урана, поддерживая необходимое значение температуры и рН по ходу пульпы. В качестве окислителя используют соединения марганца, десорбцию урана с насыщенного ионита осуществляют сернокислыми растворами (патент RU №2094512 МПК6 С22В 60/02, опубл. 27.10.1997).

Недостатком способа является отсутствие селективного отделения урана от анионных примесей, а введение в качестве окислителя соединений марганца не позволяет удержать ванадий в степени окисления (+IV) и добиться селективного извлечения ценных компонентов (урана и молибдена).

Известен способ извлечения урана, молибдена и ванадия из руд, который включает измельчение и выщелачивание ценных компонентов минеральной кислотой и последующее сорбционное извлечение растворенных урана, молибдена и ванадия из пульпы. Перед выщелачиванием измельченную руду в виде водной пульпы окисляют путем обработки анионитом в OH-форме при pH 8.5-11.6, окислительно-восстановительном потенциале (ОВП) от -50 до +150 мВ при температуре 30-80°C, а выщелачивание и сорбционное извлечение ведут путем добавления в окисленную пульпу серной кислоты до pH 1.5-3.5 и анионита в сульфатной форме (патент RU №2211253, МПК С22В 60/02, опубл. 27.08.2003).

Однако данный способ не позволяет окислять соединения редких металлов в низших степенях из шпенелидов черных сланцев анионитом в OH-форме.

Техническим результатом изобретения является сорбционное концентрирование и селективное отделение урана и молибдена от ванадия, а ванадия от редкоземельных элементов и редкоземельных элементов от железа и алюминия, повышение интенсификации сорбционного процесса, сокращение технологической схемы и использование экологически чистых окислителей.

Технический результат достигается способом извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд, включающий сорбцию ценных компонентов противотоком ионитами при регулируемом pH растворов и окислительно-восстановительного потенциала Eh, при этом сорбцию проводят стадиально ионитами из продуктивных растворов, содержащих уран, молибден, ванадий и редкоземельные элементы, на первой стадии сорбцией на анионите извлекают уран и молибден, на второй стадии сорбцией на анионите извлекают ванадий в присутствии перекиси водорода при Eh 750-800 мВ, pH 1,8-2,0 и при температуре 60°C и ведут сорбцию ванадия до полного разрушения перекиси водорода и до понижения Eh ниже 400 мВ, после чего маточники сорбции отправляют на катионит при pH 2,0-2,5 и Eh 300-350 мВ для извлечения редкоземельных элементов.

Предлагаемый способ включает взаимодействие в сорбционной колонне в противотоке с анионитом сложных по солевому составу растворов, причем взаимодействие осуществляется в переменном интервале значений окислительно-восстановительного потенциала (Eh) и величины pH среды, при которых извлекаемые металлы находятся в растворенном состоянии.

Исходный состав раствора, поступающий на сорбционный передел, приведен в табл.1

Таблица 1 pH 1,2 Eh мB 350-450 Солесодержание 220-280 г/л Компоненты H2SO4 VO2+ UO22+ MoO22+ РЗЭ3+ PO43- Fe3+ Al3+ Содержание, г/л 15 3,5 0,15 0,20 0,30 2,5 8-12 12-15

Приведенный состав ионных форм элементов в растворе не позволяет выбрать одно свойство и на его основе создать технологию комплексного извлечения и разделения. Для решения этого вопроса необходимо применить ряд комбинированных приемов химии. Известно, что поведение многовалентных ионов элементов в растворах зависит от ионного потенциала, определяемого отношением заряда к ионному радиусу. На рис. сгруппированы свойства редких металлов в зависимости от ионного потенциала. Металлы с ионным потенциалом меньше 3-катионы (с 8-электронной конфигурацией во внешней оболочке). Металлы же с очень высоким ионным потенциалом - более 10, образуют прочные комплексные анионы с ковалентными связями: (PO4)3-, (VO4)3-, UO22+, MoO22+. При ионном потенциале 3-10 располагаются ионы металлов с амфотерными свойствами. Кроме того, известно, что Eh и pH влияют на полиядерность ионных форм и кинетику их взаимного перехода.

Сущность способа извлечения ценных компонентов из продуктивных растворов переработки черносланцеых руд с извлечением урана, молибдена, ванадия и редкоземельных элементов заключается в том, что на первой стадии сорбции окисление урана и молибдена проводят железом (+III) и ванадием (+IV), а на второй стадии сорбции окисление ванадия (+IV) проводят пероксидом водорода, а сорбцию редкоземельных элементов проводят после разрушения пероксида.

Концентрирование и селективное извлечение урана и молибдена на анионит, перемещаемый противотоком раствору, ведут в условиях, при которых Eh поддерживают вьюститным железом (Fe2+) в пределах 350-400 мB (Fe3+/Fe2+=20:1) и pH 1,0-1,5, ванадий с достаточной надежностью удерживается в растворе в виде пары V4+/V3+, которая предотвращает появление V5+.

Появление ванадия в высшей степени окисления вызываем два нежелательных процесса, с одной стороны, переход ванадия на анионит вместе с ураном и молибденом (нарушается селективность процесса), а с другой стороны, выпадение осадка труднорастворимых комплексных солей железа и ванадия. При снижении Eh менее 350 mB снижается интенсивность сорбционного извлечения, а повышение Eh более 400 mB и pH более 1,6 приводит к выпадению труднорастворимых солей.

Селективное отделение ванадия от редкоземельных элементов достигается за счет введения перекиси водорода (H2O2), играющую роль как окислителя, так и восстановителя. При концентрации H2O2 1,0-1,5 г/л или окислительно-восстановительном потенциале Eh 750-800 мB и pH 1,8-2,0 ванадий извлекается из раствора до содержания 0,008 г/л. В процессе сорбции ванадия при температуре 60°C происходит разрушение пероксида ванадия, перекись водорода удаляется и в растворе понижается Eh до значений менее 400 мB.

Пример осуществления способа.

Берут продуктивный раствор, состав которого приведен в таб.1., проводят противоточную сорбцию в колонке, заполненной анионитом АМ-п в количестве 10 мл при pH 1,2 и Eh 400 мB в динамических условиях и пропускают 1 л. раствора. Маточник сорбции контролируют на содержание урана (U) и молибдена (Mo). Процесс сорбции заканчивают при содержании в маточниках U не более 4 мг/л и Мо 8 мг/л. Смола содержит U 14,5 кг/т и Mo 17,5 кг/т.

Далее маточник сорбции, содержащий 3,5 г/л V2O5, обрабатывают раствором КОН до pH 1,9 и перекисью водорода (H2O2) из расчета 1,0 г/л до Eh 750 мB. Раствор пропускают через новую порцию анионита до остаточного содержания V2O5 в маточниках не более 0,01 г/л. Процесс сорбции проводят при температуре 60°C до полного разрушения H2O2 и понижения Eh менее 400 мB. Маточники сорбции пропускают через катионит Ку-2 при pH 2,0-2,2 и Eh 300-350 мB для извлечения редкоземельных элементов (РЗЭ). Извлечение Σ РЗЭ составляет около 90%.

Результаты сорбционного извлечения металлов приведены в табл.2, 3, 4

Таблица 2 Результаты сорбционного извлечения и отделения урана и молибдена от ванадия. Параметр Маточник сорбции Содержание на анионите Eh, мB pH U Mo V2O5, г/л Fe Al, г/л РЗЭ, г/л CC*, г/л Отношение Fe3+/Fe2+, г/л U Мо мг/л Изв-е, % мг/л Изв-е, % Fe3+, г/л Fe2+, г/л кг/т % кг/т % 350 1,2 15,0 90,0 26,0 89,6 3,5 5,2 0,5 9,2 0,31 141 10,4 13,5 90 17,4 87 400 1,2 4,0 97,4 24,0 90,4 3,5 5,3 0,28 9,1 0,25 150 18,9 14,6 97,3 17,6 88 450 1,2 2,0 98,7 21,0 91,6 3,5 5,3 0,25 9,0 0,26 140 21,0 14,8 98,6 17,9 89,5 400 1,0 12,0 92,0 25,0 90,6 3,5 5,2 0,20 9,1 0,25 143 26,0 13,8 92,0 17,5 87,5 400 1,25 3,0 98,0 21,0 91,6 3,5 5,2 0,22 9,0 0,24 155 23,6 14,7 98,0 17,9 89,5 400 1,5 1,0 99,3 18,0 92,8 3,5 5,2 0,23 9,2 0,23 150 22,6 14,9 99,3 18,2 91 *CC - солесодержание

Таблица 3 Результаты сорбционного извлечения и отделения ванадия от редкоземельных элементов (РЗЭ) Исходный раствор Маточник сорбции Содержание на анионите Параметр H2O2, г/л V РЗЭ, г/л Fe Al, г/л P, г/л CC*, г/л V2O5 Eh, мB pH мг/л Изв-е, % Fe3+, г/л Fe2+, г/л кг/т % 700 1,8 1,0 0,009 97,3 0,22 5,3 0,001 9,1 2,41 140 349,1 99,7 750 1,8 1,5 0,006 98,1 0,21 5,3 0,002 9,0 2,34 150 349,4 99,8 800 1,8 2,0 0,005 99,0 0,22 5,3 - 9,0 2,42 142 349,5 99,85 750 1,6 2,0 0,008 97,3 0,22 5,3 0,001 9,1 2,45 138 349,2 99,7 750 1,8 2,0 0,006 98,1 0,22 5,3 - 9,2 2,35 139 349,4 99,82 750 2,0 2,0 0,005 99,0 0,22 5,3 - 9,0 2,28 138 349,5 99,85 CC* - солесодержание

Таблица 4 Результаты сорбционного извлечения и отделения РЗЭ Eh, мB pH Маточник сорбции Содержание на анионите РЗЭ Fe H2O2, г/л РЗЭ мг/л Изв-е, % Fe3+, г/л Fe2+, г/л кг/т % 300 2,0 18 92.0 5,1 0,21 - 20,2 92.0 350 2,0 22 90.0 5,0 0,18 - 19,8 90.0 400 2,0 26 88.0 5,0 0,20 - 19,4 88.0

Похожие патенты RU2493279C2

название год авторы номер документа
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОСТАТКОВ ДОМАНИКОВЫХ ОБРАЗОВАНИЙ 2013
  • Школьник Владимир Сергеевич
  • Жарменов Абдурасул Алдашевич
  • Козлов Владиллен Александрович
  • Кузнецов Андрей Юрьевич
  • Бриджен Николас Джон
RU2547369C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕРОД-КРЕМНЕЗЕМИСТЫХ ЧЕРНОСЛАНЦЕВЫХ РУД 2011
  • Сарычев Геннадий Александрович
  • Денисенко Александр Петрович
  • Зацепина Мария Сергеевна
  • Деньгинова Светлана Юрьевна
  • Татаринов Александр Сергеевич
  • Смирнов Константин Михайлович
  • Пеганов Владимир Алексеевич
RU2477327C1
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО СЫРЬЯ 2010
  • Козлов Владиллен Александрович
  • Аймбетова Индира Оразгалиевна
  • Карпов Анатолий Александрович
  • Васин Евгений Александрович
  • Вдовин Виталий Викторович
  • Махнутин Андрей Анатольевич
  • Печенкина Анна Аверьяновна
  • Сметанин Сергей Дмитриевич
RU2437946C2
СПОСОБ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД С ИЗВЛЕЧЕНИЕМ РЕДКИХ МЕТАЛЛОВ 2011
  • Школьник Владимир Сергеевич
  • Жарменов Абдурасул Алдашевич
  • Козлов Владиллен Александрович
  • Кузнецов Андрей Юрьевич
  • Бриджен Николас Джон
  • Смирнов Константин Михайлович
RU2493272C2
СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА, МОЛИБДЕНА И ВАНАДИЯ 2001
  • Водолазов Л.И.
  • Шаталов В.В.
  • Молчанова Т.В.
  • Баринова М.А.
  • Федонова Е.Г.
  • Молчанов С.А.
  • Литвиненко В.Г.
  • Горбунов В.А.
RU2211253C2
Способ извлечения ванадия из руд 2016
  • Молчанова Татьяна Викторовна
  • Овчаренко Евгений Васильевич
RU2644720C2
СПОСОБ ИЗВЛЕЧЕНИЯ НИКЕЛЯ И КОБАЛЬТА ИЗ СИЛИКАТНЫХ НИКЕЛЬ-КОБАЛЬТОВЫХ РУД 2011
  • Гребнев Геннадий Сергеевич
  • Савеня Николай Васильевич
  • Савеня Михаил Николаевич
  • Суклета Сергей Александрович
RU2465449C1
ПИРИДИНИЕВЫЙ ИОНИТ ДЛЯ СОРБЦИИ УРАНА ИЗ РАСТВОРОВ И ПУЛЬП 2008
  • Балановский Николай Владимирович
  • Жарова Евгения Васильевна
  • Зорина Ада Ивановна
  • Ильинский Андрей Александрович
  • Молчанова Татьяна Викторовна
  • Сахарова Лариса Илларионовна
  • Шаталов Валентин Васильевич
  • Шереметьев Михаил Федорович
RU2385885C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКАЛИЕВЫХ КВАСЦОВ 2013
  • Школьник Владимир Сергеевич
  • Жарменов Абдурасул Алдашевич
  • Козлов Владиллен Александрович
  • Кузнецов Андрей Юрьевич
  • Бриджен Николас Джон
  • Яшин Сергей Алексеевич
RU2537626C2
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО СЫРЬЯ 2007
  • Козлов Владиллен Александрович
  • Батракова Лариса Хасановна
  • Кузнецов Андрей Юрьевич
  • Бриджен Николас Джон
  • Сактаганов Махсат Абдирович
RU2374344C2

Иллюстрации к изобретению RU 2 493 279 C2

Реферат патента 2013 года СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД

Изобретение относится к области гидрометаллургии, а именно к способу извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд. Способ включает сорбцию ценных компонентов из продуктивных растворов противотоком ионитами при регулируемом pH среды и окислительно-восстановительного потенциала Eh. Сорбцию проводят стадиально ионитами из продуктивных растворов, содержащих уран, молибден, ванадий и редкоземельные элементы. На первой стадии сорбцией на анионите извлекают уран и молибден. На второй стадии сорбцией на анионите извлекают ванадий в присутствии перекиси водорода при Eh 750-800 мВ, pH 1,8-2,0 и при температуре 60°C, причем сорбцию ванадия ведут до полного разрушения перекиси водорода и до понижения Eh ниже 400 мВ. Затем маточники сорбции отправляют на катионит при pH 2,0-2,5 и Eh 300-350 мВ для извлечения редкоземельных элементов. Техническим результатом изобретения является сорбционное концентрирование и селективное отделение урана и молибдена от ванадия, а ванадия от редкоземельных элементов и редкоземельных элементов от железа и алюминия, интенсификация сорбционного процесса, сокращение технологической схемы и возможность использования экологически чистых окислителей. 1 ил., 4 табл., 1 пр.

Формула изобретения RU 2 493 279 C2

Способ извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд, включающий сорбцию ценных компонентов противотоком ионитами при регулируемом pH среды и окислительно-восстановительного потенциала Eh, при этом сорбцию проводят стадиально ионитами из продуктивных растворов, содержащих уран, молибден, ванадий и редкоземельные элементы, на первой стадии сорбцией на анионите извлекают уран и молибден, на второй стадии сорбцией на анионите извлекают ванадий в присутствии перекиси водорода при Eh 750-800 мВ, pH 1,8-2,0 и при температуре 60°C, причем сорбцию ванадия ведут до полного разрушения перекиси водорода и до понижения Eh ниже 400 мВ, после чего маточники сорбции отправляют на катионит при pH 2,0-2,5 и Eh 300-350 мВ для извлечения редкоземельных элементов.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493279C2

Комплексная переработка кварцитов Каратау // Сб
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР 1922
  • Гебель В.Г.
SU2000A1
Трехфазный переключатель обмотки асинхронного двигателя со звезды на треугольник 1928
  • Буракевич И.Ф.
SU12431A1
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО СЫРЬЯ 1998
  • Козицын А.А.
  • Плеханов К.А.
  • Мосягин С.А.
  • Шевелева Л.Д.
  • Лебедь А.Б.
  • Ходыко И.И.
RU2148669C1
US 4051221, 27.09.1977
Вычислительное устройство 1985
  • Белоцерковский Александр Юзефович
  • Комель Борис Андреевич
  • Варламов Лев Николаевич
  • Богуславский Вильям Леонидович
SU1297078A1
Способ получения ионитов 1975
  • Валькова Александра Константиновна
  • Чистякова Алла Вячеславовна
  • Артюшин Георгий Арсентьевич
  • Зайцева Ида Васильевна
  • Галицкая Наталья Борисовна
  • Стебенева Ирина Георгиевна
  • Тодрес Ирина Михайловна
  • Пашков Аркадий Борисович
SU547455A1
Способ контроля качества магнитных головок 1976
  • Халецкий Михаил Борисович
  • Лукьянов Альберт Евдокимович
  • Рау Эдуард Иванович
SU555128A1

RU 2 493 279 C2

Авторы

Школьник Владимир Сергеевич

Жарменов Абдурасул Алдашевич

Козлов Владиллен Александрович

Кузнецов Андрей Юрьевич

Бриджен Николас Джон

Денисенко Александр Петрович

Даты

2013-09-20Публикация

2011-11-24Подача