Заявляемое устройство относится к области охраны окружающей среды, а точнее к области переработки радиоактивных и токсичных отходов. Наиболее эффективно заявляемое устройство может быть реализовано при высокотемпературной переработке горючих, негорючих, смесей горючих и негорючих сухих гранулированных, порошкообразных (в том числе и кальцинированных [1]) радиоактивных и токсичных отходов, водосодержащих шламов и пульп радиоактивных и токсичных отходов, а также водных солевых растворов, содержащих радиоактивные и токсичные вещества.
Известно устройство для высокотемпературной переработки радиоактивных отходов (плазменная шахтная печь) [2], включающее корпус с расширяющимся сверху вниз каналом, снабженный узлом загрузки и газоотводным патрубком, расположенными в верхней части корпуса, плазменные генераторы с устройством для подвода в них окислителя, расположенные в нижней части корпуса, а также герметичную камеру (камеру гомогенизации) с плазменным реактором и узлом выгрузки готового продукта.
Недостатками известного устройства являются:
- ограниченная область применения, связанная с тем, что известное устройство предназначено только для высокотемпературной переработки твердых и жидких горючих радиоактивных отходов;
- ненадежность работы, связанная с возможностью прекращения перемещения по каналу корпуса перерабатываемых отходов из-за их встречного движения с отходящими газами, повышенная опасность работы, связанная с присутствием в отходящих газах, поступающих в газоотводной патрубок, радиоактивных и токсичных веществ, пониженная производительность, связанная с замедленным перемещением по каналу корпуса перерабатываемых отходов, обусловленные взаиморасположением узла загрузки, газоотводного патрубка и плазменных генераторов;
- повышенная сложность, обусловленная наличием в составе устройства усложненной конструкции узла выгрузки готового продукта;
- повышенная энергоемкость, обусловленная наличием в составе устройства нескольких плазменных генераторов и плазменного реактора герметичной камеры.
Известно устройство для высокотемпературной переработки радиоактивных отходов (плазменная шахтная печь) [3], включающее корпус с расширяющимся сверху вниз каналом, снабженным узлом загрузки и газоотводным патрубком, расположенными в верхней части корпуса, плазменные генераторы с устройством для подвода в них окислителя, расположенные в нижней части корпуса, а также герметичную камеру (камеру гомогенизации) с плазменным реактором и узлом выгрузки готового продукта.
Недостатками известного устройства являются:
- ограниченная область применения, связанная с тем, что известное устройство предназначено только для высокотемпературной переработки твердых и жидких горючих радиоактивных отходов;
- ненадежность работы, связанная с возможностью прекращения перемещения по каналу корпуса перерабатываемых отходов из-за их встречного движения с отходящими газами, повышенная опасность работы, связанная с присутствием в отходящих газах, поступающих в газоотводной патрубок, радиоактивных и токсичных веществ, пониженная производительность, связанная с замедленным перемещением по каналу корпуса перерабатываемых отходов, обусловленные взаиморасположением узла загрузки, газоотводного патрубка и плазменных генераторов;
- повышенная сложность, обусловленная наличием в составе устройства усложненной конструкции узла выгрузки готового продукта;
- повышенная энергоемкость, обусловленная наличием в составе устройства нескольких плазменных генераторов и плазменного реактора герметичной камеры.
Наиболее близким по технической сущности к заявляемому устройству является устройство для высокотемпературной переработки радиоактивных отходов (плазменная шахтная печь) [4], включающее корпус, выполненный из огнеупорного материала (использование огнеупорного материала является обязательным для печей данных конструкций), с расширяющимся сверху вниз каналом, узел загрузки отходов, расположенный на верхней торцевой части корпуса, газоотводной патрубок, расположенный на верхней боковой части корпуса, плазменные генераторы с узлом подачи в них газообразного окислителя, расположенные на нижней боковой части корпуса, герметичную камеру (камеру гомогенизации) с плазменным реактором и узлами выгрузки, соединенную с нижней торцевой частью корпуса, а также приемную емкость для сбора конечного продукта (подвижной, перемещаемый под), расположенную в герметичной камере.
Недостатками известного устройства являются:
- ограниченная область применения, связанная с тем, что известное устройство предназначено только для высокотемпературной переработки твердых и жидких горючих радиоактивных отходов;
- ненадежность работы, связанная с возможностью прекращения перемещения по каналу корпуса перерабатываемых отходов из-за их встречного движения с отходящими газами, повышенная опасность работы, связанная с присутствием в отходящих газах, поступающих в газоотводной патрубок радиоактивных и токсичных веществ, пониженная производительность, связанная с замедленным перемещением по каналу корпуса перерабатываемых отходов, обусловленные взаиморасположением узла загрузки, газоотводного патрубка и плазменных генераторов;
- повышенная энергоемкость, обусловленная наличием в составе устройства нескольких плазменных генераторов и плазменного реактора.
Преимуществами заявляемого устройства являются расширение области его применения, повышение надежности и безопасности работы, повышение производительности, а также снижение его энергоемкости.
Указанные преимущества обеспечиваются за счет того, что заявляемое устройство включает корпус, выполненный из огнеупорного материала, с расширяющимся сверху вниз каналом, состоящий из верхней секции корпуса длиной L1 с выполненным в ней каналом поперечным сечением S1, подсоединенной своей нижней торцевой частью к верхней торцевой части нижней секции корпуса длиной L2 с выполненным в ней каналом сечением S2, причем к нижней торцевой части нижней секции корпуса, являющейся также еще и нижней торцевой частью корпуса, подсоединена снабженная охлаждающей рубашкой герметичная камера с узлом выгрузки, в которой расположена приемная емкость для сбора конечного продукта.
С верхней торцевой частью верхней секции корпуса, являющейся также еще и верхней торцевой частью корпуса, своим днищем с выполненным в нем отверстием соединена плазменная камера, подсоединенная также своим входным патрубком, расположенным на ее боковой части, к выходному патрубку камеры смешения. К камере смешения, снабженной патрубком для подачи сжатого воздуха, подсоединены дозатор отходов и дозатор флюсующих добавок, причем дозатор отходов, дозатор флюсующих добавок и камера смешения вместе образуют узел загрузки отходов.
Своим выходным отверстием, расположенным в ее днище, плазменная камера соединена с каналом верхней секции корпуса, причем на плоской крышке плазменной камеры расположен плазменный генератор с узлом подачи в него газообразного окислителя.
На боковой части нижней секции корпуса расположен патрубок для подачи газообразного окислителя в канал нижней секции корпуса, внутри герметичной камеры, между нижней торцевой частью корпуса и приемной емкостью - охлаждающий узел, в качестве которого используют трубчатый, пластинчатый теплообменник или водяную форсунку, а на боковой части герметичной камеры, ниже уровня расположения охлаждающего узла - газоотводной патрубок.
Величина L2 составляет не менее 1,7L1, но не более 2,3L1, величина S2 - не менее 3S1, но не более 4S1, а плазменный генератор, плазменная камера, верхняя и нижняя секции корпуса соединены между собой соосно.
Отличительными признаками заявляемого устройства являются:
- то, что корпус с расширяющимся сверху вниз каналом состоит из верхней секции корпуса длиной L1 с выполненным в ней каналом поперечным сечением S1, подсоединенной своей нижней торцевой частью к верхней торцевой части нижней секции корпуса длиной L2 с выполненным в ней каналом поперечным сечением S2;
- то, что на верхней торцевой части корпуса расположена плазменная камера с плоской крышкой, соединенная своим входным патрубком, расположенным на ее боковой части, с выходным патрубком камеры смешения, которая снабжена патрубком для подачи сжатого воздуха и к которой подсоединены дозатор отходов и дозатор флюсующих добавок, причем своим выходным отверстием, расположенным в ее днище, плазменная камера соединена с каналом верхней секции корпуса;
- то, что плазменный генератор с узлом подачи в него газообразного окислителя расположен на плоской крышке плазменной камеры;
- то, что на боковой части нижней секции корпуса расположен патрубок для подачи газообразного окислителя в канал нижней секции корпуса;
- то, что герметичная камера снабжена охлаждающей рубашкой, а внутри нее между нижней торцевой частью корпуса и приемной емкостью расположен охлаждающий узел, выполненный в форме трубчатого, пластинчатого теплообменника или водяной форсунки;
- то, что газоотводной патрубок расположен на боковой части герметичной камеры, ниже уровня расположения охлаждающего узла;
- то, что плазменный генератор, плазменная камера, верхняя и нижняя секции корпуса соединены между собой соосно;
- то, что величина L2 составляет не менее 1,7L1, но не более 2,3L1, а S2 - не менее 3S1, но не более 4S1.
Заявляемое устройство иллюстрируется чертежом.
Устройство для высокотемпературной переработки радиоактивных и токсичных отходов содержит дозатор 1 отходов, камеру смешения 2, патрубок 3 для подачи сжатого воздуха, дозатор 4 флюсующих добавок, выходной патрубок 5 камеры смешения, входной патрубок 6 плазменной камеры, плазменную камеру 7, крышку 8 плазменной камеры, днище 9 плазменной камеры, плазменный генератор 10, узел 11 подачи газообразного окислителя, верхнюю секцию 12 корпуса, канал 13 верхней секции корпуса, нижнюю секцию 14 корпуса, канал 15 нижней секции корпуса, патрубок 16 для подачи газообразного окислителя, герметичную камеру 17, охлаждающий узел 18, газоотводной патрубок 19, охлаждающую рубашку 20, приемную емкость 21 для сбора конечного продукта, узел выгрузки 22.
Заявляемое устройство работает следующим образом.
Предварительно перед подачей отходов запускают плазменный генератор 10 и разогревают верхнюю секцию 12 корпуса и нижнюю секцию 14 корпуса устройства до температуры порядка 1600oC. После вывода устройства на режим рабочих температур в камеру смешения 2 дозатором 1 отходов подают радиоактивные и токсичные отходы, дозатором 4 флюсующих добавок - флюсующие добавки, а через патрубок 3 для подачи сжатого воздуха - сжатый воздух. В камере смешения 2 поток сжатого воздуха перемешивает радиоактивные и токсичные отходы с флюсующими добавками и транспортирует полученную смесь в плазменную камеру 7 непосредственно в плазменный факел или прифакельную зону плазменного генератора 10. Возможность гарантированной подачи вышеуказанной смеси в плазменный факел или прифакельную зону обеспечивается расположением входного патрубка 6 плазменной камеры на ее боковой стенке, а также плоской формой крышки плазменной камеры (при плоской форме крышки расстояние между выходным отверстием плазменного генератора и продольной осью входного патрубка 6 плазменной камеры является минимальным), причем максимальное повышение производительности и безопасности работы заявляемого устройства обеспечивается при цилиндрической форме плазменной камеры и тангенциальном расположении ее входного патрубка.
В плазменном факеле или прифакельной зоне происходит испарение воды, в случае ее присутствия в составе радиоактивных и токсичных отходов, начинается процесс сгорания их горючей составляющей, а также происходит процесс деструкции компонентов радиоактивных и токсичных отходов до окислов и элементарных соединений, после чего они из плазменной камеры 7 через отверстие в днище 9 плазменной камеры сначала поступают в канал 13 верхней секции корпуса, где происходит сгорание основной части горючей составляющей отходов, а затем в канал 15 нижней секции корпуса. Благодаря ступенчатому расширению сечения канала 15 нижней секции корпуса по сравнению с сечением канала 13 верхней секции корпуса происходит резкое снижение скорости движения образующихся отходящих газов и твердых продуктов высокотемпературной переработки радиоактивных и токсичных отходов, что в условиях подачи газообразного окислителя через патрубок 16 для подачи газообразного окислителя обеспечивает окончательный дожиг не успевшей сгореть в канале 13 верхней секции корпуса части их горючей составляющей, а также образовавшихся летучих токсичных соединений, причем одностороннее движение твердых и газообразных продуктов высокотемпературной переработки радиоактивных и токсичных отходов обеспечивает повышение надежности и производительности работы устройства.
Одновременно с этим из флюсующих добавок, смешанных с радиоактивными и токсичными отходами, начинается синтез стеклоподобного материала, его плавление и обволакивание образующимся стеклорасплавом поверхностей твердых частиц продуктов высокотемпературной переработки радиоактивных и токсичных отходов.
Из канала 15 нижней секции корпуса покрытые слоем стеклорасплава твердые продукты высокотемпературной переработки радиоактивных и токсичных отходов, а также отходящие газы поступают в снабженную охлаждающей рубашкой 20 герметичную камеру 17, где на охлаждающем узле 18 происходит их охлаждение, причем охлаждающая рубашка 20 предохраняет герметичную камеру 17 от разрушения в результате воздействия на нее термических нагрузок. В процессе охлаждения отходящие газы охлаждаются до температуры, обеспечивающей их дальнейшую газоочистку на фильтрах, а слой стеклорасплава на поверхности твердых частиц продуктов высокотемпературной переработки радиоактивных и токсичных отходов затвердевает, что предотвращает выделение из них в газовую фазу летучих форм радионуклидов.
В случае, если величины L2 и S2 будут выходить за вышеуказанные пределы, а плазменный генератор, плазменная камера, верхняя и нижняя секции корпуса будут соединены между собой не соосно, не будут обеспечиваться полный дожиг токсичных соединений в отходящих газах и предотвращаться выделение в газовую фазу летучих форм радионуклидов.
После охлаждающего узла 18 в пространстве между ним и приемной емкостью 21 происходит сепарация твердой и газовой составляющей продуктов высокотемпературной переработки радиоактивных и токсичных отходов, причем твердая фаза собирается в приемной емкости 21 для сбора конечного продукта, а газовая - удаляется через raзooтвoднoй патрубок 19.
Собранный в приемной емкости 21 конечный продукт представляет собой твердые частицы радиоактивных веществ, заключенные в твердую нерадиоактивную стеклообразную оболочку, по своим физико-химическими свойствам (прочность, водоустойчивость, радиационная стойкость) пригодные для долгосрочного хранения без какой-либо дополнительной переработки (включения в стеклянные или керамические матрицы, цементирования и т.п.), причем использование охлаждающих устройств иных конструкций может не обеспечить получения конечного продукта с вышеуказанными физико-химическими свойствами.
Испытания показали, что:
- область применения заявляемого устройства шире, чем у устройства наиболее близкого аналога, что обусловлено возможностью его использования также и для высокотемпературной переработки водосодержащих радиоактивных и токсичных отходов;
- заявляемое устройство более надежно в работе вследствие одностороннего перемещения продуктов высокотемпературной переработки и отходящих газов, обусловленного взаиморасположением плазменной камеры, плазменного генератора и газоотводного патрубка;
- заявляемое устройство более безопасно в работе вследствие отсутствия в отходящих газах, поступающих в газоотводной патрубок, летучих форм радионуклидов и токсичных веществ из-за практически полного разложения токсичных веществ в факеле плазменного генератора и канале корпуса устройства, а также изоляции радионуклидов слоем застывшего нерадиоактивного стеклоподобного материала;
- производительность заявляемого устройства в среднем выше в 2-3 раза чем устройства наиболее близкого аналога;
- энергоемкость заявляемого устройства в среднем в 1,5 раза ниже чем у устройства наиболее близкого аналога.
Литература
1. А.С.Никифоров, В.В.Куличенко, М.И.Жихарев, "Обезвреживание жидких радиоактивных отходов", Москва, Энергоатомиздат, 1985, стр. 84-90.
2. Патент РФ N 1810912, МКИ5: G 21 F 9/32, F 27 B 1/00, оп. в Бюл. N 15, 1993.
3. Патент РФ N 1810391, МКИ5: G 21 F 9/32, F 27 B 1/00, оп. в Бюл. N 15, 1993.
4. Патент РФ N 1810911, МКИ5: G 21 F 9/32, F 27 B 1/00, оп. в Бюл. N 15, 1993.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ | 1998 |
|
RU2140109C1 |
ПЛАЗМЕННАЯ ШАХТНАЯ ПЕЧЬ ДЛЯ ПЕРЕРАБОТКИ ТВЕРДЫХ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 1999 |
|
RU2157570C1 |
УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 1996 |
|
RU2107347C1 |
УСТРОЙСТВО ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2168228C1 |
УСТРОЙСТВО ДЛЯ ДОЖИГАНИЯ ОТХОДЯЩИХ ГАЗОВ, ОБРАЗУЮЩИХСЯ ПРИ СЖИГАНИИ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 1999 |
|
RU2153716C1 |
УСТРОЙСТВО ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ИОНООБМЕННЫХ СМОЛ | 1999 |
|
RU2168227C1 |
УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ РАДИОАКТИВНОГО ЗОЛЬНОГО ОСТАТКА | 1997 |
|
RU2119201C1 |
УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ТВЕРДЫХ РАДИОАКТИВНЫХ И ТОКСИЧНЫХ ОТХОДОВ | 2000 |
|
RU2175458C1 |
УСТРОЙСТВО ДЛЯ СЖИГАНИЯ РАДИОАКТИВНЫХ И ОПАСНЫХ БИООБЪЕКТОВ | 1999 |
|
RU2163737C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ИОНООБМЕННЫХ СМОЛ | 1999 |
|
RU2153718C1 |
Сущность изобретения: устройство содержит корпус, выполненный из огнеупорного материала с расширяющимся сверху вниз каналом. Корпус состоит из верхней секции длиной L1 с выполненным в ней каналом поперечным сечением S1. Верхняя секция подсоединена своей нижней торцевой частью к верхней торцевой части нижней секции корпуса длиной L2 с выполненным в ней каналом сечением S2. К нижней торцевой части нижней секции корпуса подсоединена снабженная охлаждающей рубашкой герметичная камера с узлом выгрузки, в которой расположена приемная емкость для сбора конечного продукта. С верхней торцевой частью верхней секции корпуса своим днищем соединена плазменная камера, подсоединенная своим выходным патрубком к выходному патрубку камеры смешения. Преимуществами заявленного устройства являются расширение области его применения, повышение надежности, безопасности работы, повышение производительности, а также снижение его энергоемкости. 1 з.п.ф-лы, 1 ил.
Плазменная шахтная печь для переработки радиоактивных отходов | 1990 |
|
SU1810911A1 |
Плазменная шахтная печь для переработки радиоактивных отходов | 1990 |
|
SU1810912A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ТЕРМИЧЕСКОГО ВАКУУМНОГО ОСАЖДЕНИЯ СПЛАВОВ МЕТОДОМ ЭМИССИОННОЙ СПЕКТРОСКОПИИ | 2009 |
|
RU2427667C2 |
АБСОРБЕР ДЛЯ ОЧИСТКИ ПЕЧНЫХ ГАЗОВ ФТОРИСТОВОДОРОДНОГО ПРОИЗВОДСТВА И СПОСОБ ПОДГОТОВКИ ГРАНУЛ НАСАДКИ ДЛЯ НЕГО | 1994 |
|
RU2029608C1 |
DE 3341748 А1, 30.05.1985 | |||
СПОСОБ ПОДАЧИ ГОРЮЧЕЙ СМЕСИ В ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ И РЕГУЛИРОВОЧНЫЙ ВИНТ КАЧЕСТВА СМЕСИ КАРБЮРАТОРНОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1998 |
|
RU2136939C1 |
Авторы
Даты
2000-12-10—Публикация
1999-09-09—Подача