Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги для определения места короткого замыкания в тяговой сети переменного тока.
Известно устройство для определения места повреждения тяговой сети электрифицированной железной дороги переменного тока, содержащее датчик тока IA первой подстанции и датчик напряжения UA первой подстанции, а также датчик тока IB второй подстанции и датчик напряжения UB второй подстанции, блоки деления напряжения на ток на этих подстанциях, вычисляющие отношения соответственно ZA = UA/IA и ZB = UB/IB, и преобразователи, реализующие вычислительные алгоритмы в виде математических выражений ZA/(ZA+ZB) и ZB/(ZA+ZB), по которым судят о месте короткого замыкания в тяговой сети. Его недостатком являются низкая точность при коротких замыканиях через дугу или переходное сопротивление в месте повреждения, а также из-за нелинейной зависимости сопротивления рельсовой цепи от величины тока и расстояния до места повреждения из-за шунтирующего влияния земли.
Сущность изобретения заключается в том, что в устройство, содержащее датчик тока IA первой подстанции и датчик напряжения UA первой подстанции, а также датчик тока IB второй подстанции и датчик напряжения UB второй подстанции, дополнительно введены на первой подстанции второй датчик тока I'1 фидера поврежденной контактной сети и измеритель угла сдвига фазы ϕ1 тока относительно напряжения UA, а на второй подстанции - измеритель угла сдвига фазы ϕB тока IB относительно напряжения UB.
В устройство введены также первый и второй задатчики сопротивлений XпA и XпB соответственно первой и второй подстанций, задатчик расстояния I1 между первой подстанцией и постом секционирования, а также первый, второй, третий, четвертый и пятый программируемые многофункциональные преобразователи.
Выход датчика тока IA присоединен к первым входам угла сдвига ϕA первого, третьего и четвертого, а также к четвертому входу пятого многофункциональных преобразователей. Выход датчика тока I'1 первой подстанции присоединен к первым входам измерителя угла сдвига фазы ϕ1 и пятого многофункционального преобразователя, к восьмому входу которого подключен выход задатчика расстояния. Выход датчика напряжения UA подключен ко вторым входам первого и второго упомянутых измерителей угла сдвига фазы и к третьему входу первого многофункционального преобразователя, к четвертому входу которого присоединен выход задатчика сопротивления XпA. Выход датчика напряжения UB подключен к первому входу измерителя угла сдвига фазы ϕB и второму входу второго многофункционального преобразователя, к первому входу которого подключен выход задатчика сопротивления XпB. Выход датчика тока IB подключен ко второму входу измерителя угла сдвига фазы ϕB, к четвертому входу второго и к шестым входам третьего и четвертого многофункциональных преобразователей, выходы которых подключены к пятому и седьмому входам пятого многофункционального преобразователя. Выход измерителя угла сдвига фазы ϕA подключен ко вторым входам первого, третьего и четвертого и третьему входу пятого многофункциональных преобразователей, ко второму входу которого подключен выход измерителя угла сдвига фазы ϕ1. Выход измерителя фазы второй подстанции подключен к третьему входу второго, а также к пятым входам третьего и четвертого многофункциональных преобразователей. Выход первого многофункционального преобразователя присоединен к третьим входам третьего и четвертого многофункциональных преобразователей, к четвертым входам которых подключен выход второго многофункционального преобразователя, и к шестому входу пятого многофункционального преобразователя.
Первый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала ΨA путем реализации вычислительного алгоритма в виде математического выражения:
Второй многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала ΨB путем реализации вычислительного алгоритма в виде математического выражения:
Третий многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала Ik путем реализации вычислительного алгоритма в виде математического выражения:
Четвертый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала αK путем реализации вычислительного алгоритма в виде математического выражения:
Пятый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала, соответствующего удаленности lk места повреждения, путем реализации вычислительного алгоритма в виде математического выражения:
На фиг. 1 представлена структурная схема устройства; на фиг. 2 - структурная схема (а) и схема замещения (б) контактной сети; на фиг. 3 - векторная диаграмма токов и напряжений поврежденного участка.
Структурная схема устройства содержит датчик 1 тока IA первой подстанции, датчик 2 тока I'1 фидера поврежденной контактной сети первой подстанции, датчик 3 напряжения UA первой подстанции, датчик 4 напряжения UB второй подстанции, датчик 5 тока IB второй подстанции, измеритель 6 угла сдвига тока ϕA IA относительно напряжения UA, измеритель 7 угла сдвига фазы ϕ1 тока I'1 относительно напряжения UA, измеритель 8 угла сдвига фазы ϕB тока IB относительно напряжения UB, задатчик 9 сопротивления XпA первой подстанции, задатчик 10 сопротивления XпB второй подстанции, задатчик 16 расстояния l1 от первой подстанции до поста секционирования и многофункциональные преобразователи 11, 12, 13, 14 и 15.
Устройство работает следующим образом. При коротком замыкании в тяговой сети датчики 1, 2, 3, 6 и 7 измеряют на первой подстанции соответственно значения токов IA, I'1, напряжение UA, углы сдвига фазы ϕA и ϕ1. Эти значения, а также значения XпA поступают на первый многофункциональный преобразователь 11, который вычисляет параметр ΨA. Одновременно с этим датчики 4, 5 и 8 измеряют на второй подстанции соответственно значения тока IB, напряжения UB и угла сдвига фазы ϕB. Эти значения, а также значения XпB поступают на второй многофункциональный преобразователь 12, который вычисляет параметр ΨB.
Значения токов IA, IB улов сдвига фазы ϕA, ϕB, а также параметры ΨA и ΨB. поступают на третий 13 и четвертый 14 многофункциональные преобразователи, которые вычисляют параметры соответственно IK и αK.
Значения токов IA, I'1, углов сдвига фазы ϕA, ϕ1, а также параметры ΨA, IK αK и l1 поступают на пятый многофункциональный преобразователь, который вычисляет искомое значение удаленности места короткого замыкания от первой подстанции.
Технический результат заключается в повышении точности определения удаленности lK, поскольку реализация приведенных вычислительных алгоритмов исключает влияние не результат определения таких факторов, как наличие дуги или зависимости сопротивления рельсовой цепи от тока и удаленности короткого замыкания за счет шунтирующего влияния земли.
Источник информации
Авторское свидетельство СССР N 740555, кл. B 60 M 1/00, 15.07.1970.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УДАЛЕННОСТИ МЕСТА КОРОТКОГО ЗАМЫКАНИЯ В ТЯГОВОЙ СЕТИ ЭЛЕКТРИФИЦИРОВАННОГО ТРАНСПОРТА (ВАРИАНТЫ) | 1998 |
|
RU2181672C2 |
УКАЗАТЕЛЬ МЕСТА КОРОТКОГО ЗАМЫКАНИЯ КОНТАКТНОЙ СЕТИ | 1998 |
|
RU2153426C2 |
УКАЗАТЕЛЬ УДАЛЕННОСТИ КОРОТКОГО ЗАМЫКАНИЯ В ТЯГОВОЙ СЕТИ ПЕРЕМЕННОГО ТОКА | 1998 |
|
RU2160193C2 |
ОПРЕДЕЛИТЕЛЬ УДАЛЕННОСТИ ПОВРЕЖДЕНИЯ КОНТАКТНОЙ СЕТИ (ВАРИАНТЫ) | 2001 |
|
RU2189607C1 |
ОПРЕДЕЛИТЕЛЬ МЕСТА ПОВРЕЖДЕНИЯ ТЯГОВОЙ СЕТИ | 1998 |
|
RU2177417C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ УДАЛЕННОСТИ КОРОТКОГО ЗАМЫКАНИЯ КОНТАКТНОЙ СЕТИ ПЕРЕМЕННОГО ТОКА И УСТРОЙСТВО ДЛЯ ЕГО ВЫПОЛНЕНИЯ | 2001 |
|
RU2189606C1 |
Способ определения удаленности места повреждения контактной сети (варианты) | 2015 |
|
RU2609727C1 |
Способ определения удаленности короткого замыкания контактной сети (варианты) | 2015 |
|
RU2610826C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УДАЛЕННОСТИ КОРОТКОГО ЗАМЫКАНИЯ В КОНТАКТНОЙ СЕТИ ПЕРЕМЕННОГО ТОКА МНОГОПУТНОГО УЧАСТКА (ВАРИАНТЫ) | 2020 |
|
RU2747112C1 |
Способ определения удаленности короткого замыкания контактной сети электрического транспорта (варианты) | 2015 |
|
RU2619625C2 |
Изобретение относится к электрифицированному транспорту и может использоваться в системах электроснабжения тяги для определения места короткого замыкания. Определитель места повреждения контактной сети содержит датчики тока и напряжения первой и второй подстанций, датчик тока фидера поврежденной контактной сети, измерители углов сдвига фазы токов первой и второй подстанций и тока фидера поврежденной контактной сети тока относительно напряжения, задатчики сопротивлений подстанций, задатчик расстояния между первой подстанцией и постом секционирования, а также программируемые многофункциональные преобразователи. Пятый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала, соответствующего удаленности места повреждения. Техническим результатом является повышение точности определения места повреждения при коротком замыкании в тяговой сети. 3 ил.
Определитель места повреждения контактной сети, содержащий датчик тока IA первой подстанции и датчик напряжения UA первой подстанции, а также датчик тока IB второй подстанции и датчик напряжения UB второй подстанции, отличающийся тем, что в него дополнительно введены второй датчик тока I'1 фидера поврежденной контактной сети, измеритель угла сдвига фазы ϕA тока IA относительно напряжения UA и измеритель угла сдвига фазы ϕ1 тока I'1 относительно напряжения UA, измеритель угла сдвига фазы ϕB тока IB относительно напряжения UB, первый и второй задатчики сопротивлений XпА и XпВ соответственно первой и второй подстанций, задатчик расстояния l1 между первой подстанцией и постом секционирования, а также первый, второй, третий, четвертый и пятый программируемые многофункциональные преобразователи, причем выход датчика тока IA присоединен к первым входам измерителя угла сдвига фазы ϕA, первого, третьего и четвертого, а также к четвертому входу пятого многофункциональных преобразователей, выход датчика тока I'1 первой подстанции присоединен к первым входам измерителя угла сдвига фазы ϕ1 и пятого многофункционального преобразователя, к восьмому входу которого подключен выход задатчика расстояния, выход датчика напряжения UA подключен ко вторым входам первого и второго упомянутых измерителей угла сдвига фазы и к третьему входу первого многофункционального преобразователя, к четвертому входу которого присоединен выход задатчика сопротивления XпА, выход датчика напряжения UB подключен к первому входу измерителя угла сдвига фазы ϕB и второму входу второго многофункционального преобразователя, к первому входу которого подключен выход задатчика сопротивления XпВ, выход датчика тока IB подключен ко второму входу измерителя угла сдвига фазы ϕB, к четвертому входу второго и к шестым входам третьего и четвертого многофункциональных преобразователей, выходы которых подключены к пятому и седьмому входам пятого многофункционального преобразователя, выход измерителя угла сдвига фазы ϕA подключен ко вторым входам первого, третьего и четвертого и третьему входу пятого многофункциональных преобразователей, ко второму входу которого подключен выход измерителя угла сдвига фазы ϕ1, выход измерителя фазы второй подстанции подключен к третьему входу второго, а также к пятым входам третьего и четвертого многофункциональных преобразователей, выход первого многофункционального преобразователя присоединен к третьим входам третьего и четвертого многофункциональных преобразователей, к четвертым входам которых подключен выход второго многофункционального преобразователя, и к шестому входу пятого многофункционального преобразователя, при этом первый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала ΨA путем реализации вычислительного алгоритма в виде математического выражения:
второй многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала ΨB путем реализации вычислительного алгоритма в виде математического выражения:
третий многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала IK путем реализации вычислительного алгоритма в виде математического выражения:
четвертый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала αK путем реализации вычислительного алгоритма в виде математического выражения:
пятый многофункциональный преобразователь выполнен с возможностью формирования на выходе сигнала, соответствующего удаленности lK места повреждения, путем реализации вычислительного алгоритма в виде математического выражения:
где l1 - расстояние от первой подстанции до поста секционирования или, при его отсутствии, до второй подстанции.
Устройство для определения места повреждения тяговой сети электрифицированной железной дороги | 1978 |
|
SU740555A1 |
Устройство для определения места короткого замыкания в электрических линиях | 1985 |
|
SU1394177A1 |
JP 05172892 A 13.07.1993 | |||
Керамическая масса | 2019 |
|
RU2725204C1 |
ДАЛЬНОМЕР С ДВУМЯ ЗРИТЕЛЬНЫМИ ТРУБАМИ, ОБЪЕКТИВЫ КОТОРЫХ РАСПОЛОЖЕНЫ ПО КОНЦАМ БАЗЫ | 1926 |
|
SU7288A1 |
Авторы
Даты
2000-12-20—Публикация
1998-06-01—Подача