СПОСОБ ПОЛУЧЕНИЯ КАРБИДА КАЛЬЦИЯ Российский патент 2001 года по МПК C01B31/32 

Описание патента на изобретение RU2168463C2

Изобретение относится к химической промышленности, в частности, к технологии получения карбида кальция.

Известен способ получения карбида кальция в руднотермической печи путем плавления шихты, состоящей из извести, полученной путем предварительного обжига известняка в обжиговой печи, и углеродистого материала (кокса), включающий следующие стадии:
- составление шихты из извести и кокса при соотношении по крупности в пределах 1,9-2,0;
- загрузку полученной шихты в печь;
- подачу электроэнергии через электрод;
- сплавление шихты;
- слив расплава и переработку его до товарной продукции (Л.А. Кузнецов Производство карбида кальция, М.:Госхимиздат, 1954, с.26,41,104) (I).

Недостатками способа являются сложность технологической схемы, нестабильность показателей качества вследствие колебаний степени обжига известняка (литраж получаемого карбида кальция 240-295 л/кг).

Наиболее близким по технической сущности и достигаемому результату является способ получения карбида кальция согласно патенту России N 1806991, кл. С 01 В 31/32, заявл. 14.06.90, опубл. 07.04.93, Б.И. N 13 (III), включающий следующие стадии:
- составление шихты из мелкокристаллического известняка с размером зерен кальцита в его частицах 0,001-0,015 мм и кокса при массовом отношении известняка к коксу 2,8-3,2 и при отношении размеров их частиц 4,5-5,0;
- загрузку шихты в печь;
- подачу электроэнергии через электрод;
- сплавление шихты при поддержании заданного тока электрода и рабочей мощности печи перемещением электрода и/или переключением ступеней трансформатора;
слив расплава и переработку его до товарной продукции.

Литраж получаемого карбида кальция составляет 265-275 л/кг.

Согласно этому способу в качестве кальцийсодержащей породы используют пелитоморфные (мелкокристаллические) известняки, которые при быстром термическом нагреве с образованием извести не распадаются на мелкие куски. Подобные известняки по поведению при обжиге относятся к I или II классификационной группе. Известняки III группы - крупнокристаллические мраморизованные с размером зерен кальцита 0,1-3 мм не являются термически стойкими и при нагревании распадаются на мелкие куски. В результате уменьшается соотношение размеров кусков образующейся извести и кокса (который при нагреве не разрушается) до 0,5-1. Это отражается на результатах плавки.

Литраж сливаемого карбида кальция снижается до величин, недопустимых для товарного карбида кальция (менее 240 л/кг по ГОСТ 1460-81 с дополнениями). Выход продукта в пересчете на условный карбид - 250 л/кг составляет 96%. В результате вышеизложенного переработка термически нестойких известняков экономически не рентабельна.

Таким образом, недостатками прототипа являются:
- ограничение сырьевой базы производства карбида кальция;
- получение продукта второго сорта с нестабильными показателями по качеству.

Технической задачей предлагаемого изобретения является расширение сырьевой базы производства карбида кальция и увеличение выхода стандартного карбида кальция (250 л/кг) за счет получения высоколитражного карбида кальция.

Решение поставленной технической задачи достигается тем, что в известном способе получения карбида кальция в руднотермической печи, включающем приготовление шихты из известняка и кокса при массовом отношении известняка к коксу 2,8-3,2 и при отношении размеров в печь, плавление шихты при поддержании заданного тока электрода и рабочей мощности печи путем перемещения и/или переключением ступеней напряжения трансформатора и периодический слив расплава,
плавление шихты ведут при периферийном сопротивлении электрода 1,17-1,67 Ом•см, а перед сливом расплав выдерживают в течение 5-15 мин при периферийном сопротивлении 0,83-1,2 Ом•см.

Отличительными особенностями заявляемого способа являются величина периферийного сопротивления электрода на стадии плавления 1,17-1,67 Ом•cм, время выдержки расплава перед сливом и величина периферийного сопротивления электрода на стадии выдержки расплава 0,83-1,2 Ом•см.

Указанные отличия позволяют расширить сырьевую базу карбидного производства за счет возможности переработки термически нестойких известняков и увеличить выход карбида кальция в пересчете на условный карбид на 12-24% за счет получения высоколитражного карбида кальция по сравнению с переработкой термически нестойких известняков в условиях прототипа.

Периферийное сопротивление является фактором, характеризующим технологию плавки карбида кальция, и представляет собой
К=UПD/I Ом•см,
где U -напряжение на электроде, В;
I - сила тока на электроде, А;
D - диаметр электрода см (С.А. Миллер, Ацетилен, его свойства, получение и применение, т.1, Изд-во "Химия", 1969, с.210) (III).

Определенные экспериментально оптимальные с точки зрения повышения качества карбида кальция значения периферийных сопротивлений электродов карбидной печи позволяют:
- выбрать оптимальный токовый электрический режим для получения высоколитражного продукта:
- определить при необходимости оптимальные размеры электродов, и следовательно, ванны печи.

Сущность предлагаемого способа заключается в следующем.

При сплавлении известняка с коксом протекают реакции типа Т: Ж растворения извести и углеродистого материала в первичном карбидном расплаве
CaOТВ+(Ca2•CaO•С)ж---> (CaC2•2 CaO•C)ж; (1)
Скокса+(CaC2•CaO•С)ж---> (CaC2•2 CaO•Cдиспж (2)
с накоплением в ванне печи низколитражного продукта. Особенно активно этот процесс протекает при нарушении размеров кусков сырья (много пыли и мелочи), отклонениях при дозировании. По этим причинам практически невозможно стабильно получать высоколитражный карбид кальция при использовании термически нестойких пород известняка.

Одновременно в расплаве протекают реакции насыщения расплава карбидом кальция:
CaC + CaOж ---> 2Ca + СО + C; (3)
2Ca + 2CДИСП ---> 2(CaC2)ж (4)
Для ускорения реакций (3) и( 4) в расплаве необходимо повысить температуру в реакционном тигле путем уменьшения доли энергии, идущей на образование низколитражного расплава.

Это может быть достигнуто:
1) перемещением электрода к зоне расплава с изменением электрического режима на электроде или без изменения;
2) изменением диаметра электрода.

Ведение процесса получения карбида кальция при заявленных значениях периферийных сопротивлений электродов на стадии плавки и стадии выдержки расплава, а также времени выдержки расплава позволяет получить высоколитражный карбид кальция из термически нестойких известняков.

Пример 1. Для плавки карбида кальция на ОАО "Череповецкий Азот" использовали известняки с месторождения Смычка (г. Нижний Тагил) следующего состава, мас. %: CaO 55,7; MgO 0,43; SiO2 0,46; Al2O3 0,17; Fe2O3 0,26; P 0,015; S 0,02.

Эти химически чистые известняки имеют крупнокристаллическую частично мраморизованную структуру с размером зерен кальцита 0,1-3 мм и не обладают термической стойкостью.

Известняки крупностью 20-60 мм смешивали с коксом класса 10-25 мм (зольность - 12 мас.%, влага - не более 5 мас.%, остальное углерод в массовом соотношении 2,8-3,2 и при соотношении по крупности 4,5-5,0.

Плавку производили на карбидной печи с круглой ванной, имеющей три электрода диаметром 350 мм, установленная электрическая мощность печи 2,5 мВА, максимальный рабочий ток 14000 А, предел регулирования напряжения - 48-107 В.

Полученную смесь загружали в печь между электродами до уровня ванны печи. Процесс плавки вели непрерывно с периодическим сливом расплава через 1,6 ч в стальные изложницы.

Процесс плавки между сливами включал следующие стадии.

1. Осаживание прокаленной шихты после слива расплава при опущенных электродах.

2. Загрузка корректировки при необходимости;
3. Загрузка сырой шихты до уровня колошника.

4. Выход на рабочий режим и плавка при силе тока до 10000 А, напряжении 65-107 Вт и активной мощности 1,1-2 МВт. На этой стадии происходило накопление расплава, сопровождающееся подъемом электродов на 25-30 см. Образующийся расплав содержит <55% карбида (204 л/кг). Периферийное сопротивление электродов на этой стадии составляло 1,17-1,67 Ом•см.

5. перед сливом расплава опускали электроды, увеличивая токовую нагрузку до 14000 А, и выдерживали расплав в течение 5-15 мин. Периферийное сопротивление электродов на стадии выдержки расплава составляло 0,83-1,2 Ом•см.

Результаты экспериментов представлены в табл. 1.

Снижение токовой нагрузки на стадии плавки до 4136 А приводит к высокому положению электродов, развитию дугового режима и соответственно к спеканию шихты в верхней части ванны из-за выделения мощности между электродами, что не позволяет вести процесс в нормальном режиме через угольную подину.

Снижение токовой нагрузки на стадии прогрева расплава до 5495 А (увеличение периферийного сопротивления до 1,4 Ом•см) уменьшает количество тепла, выделяющегося в расплаве при прохождении тока по цепи "электрод - подина - электрод", увеличивая долю выделяемого в шихте между электродами. При этом режиме под электродом расплав из-за недостатка температуры может частично кристаллизоваться, затрудняя слив из-под всех трех фаз.

Увеличение токовых нагрузок (на стадии плавки до 7540 А и на стадии выдержки расплава до 9497 А) и уменьшение значений периферийного сопротивления соответственно до 1,02 Ом•см и 0,81 Ом•см при пониженной мощности (70 В) сопровождается снижением объема шихты, проплавляемой в реакционном пространстве под электродом. Из-за избытка мощности происходят перегрев и разложение части карбида кальция, т.е. снижаются производительность и качество карбида кальция.

При уменьшении выдержки расплава менее 5 мин не достигается стабильность показателей качества продукта.

Увеличение выдержки расплава более 15 мин может привести к снижению качества карбида вследствие диссоциации.

Определенный экспериментально диапазон значений периферийного сопротивления карбидных печей вне зависимости от мощности печи позволяет выбрать оптимальный электрический режим для получения высоколитражного продукта при различных диаметрах электрода, что проиллюстрировано в табл. 2.

Таким образом, заявляемый способ получения карбида кальция позволяет расширить сырьевую базу производства карбида кальция за счет возможности переработки термически нестойких известняков, повысить выход продукта путем получения высоколитражного продукта (до 280-300 л/кг), а также дает возможность определить при необходимости оптимальные размеры электродов, а следовательно, и ванны печи.

Похожие патенты RU2168463C2

название год авторы номер документа
Способ получения карбида кальция 2018
  • Арлиевский Михаил Павлович
  • Немировский Иосиф Рувимович
  • Филатов Юрий Андреевич
  • Кондрашов Владимир Петрович
RU2697718C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПЛАВКИ КАРБИДА КАЛЬЦИЯ 1993
  • Педро А.А.
  • Лифсон М.И.
  • Арлиевский М.П.
  • Жилов Г.М.
  • Реутович Л.Н.
RU2080534C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА КАЛЬЦИЯ 1991
  • Шкульков А.В.
  • Ульянцев С.Г.
RU2015104C1
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛА ИЗ ШЛАКА ПРОИЗВОДСТВА ПЕРЕДЕЛЬНОГО ФЕРРОСИЛИКОХРОМА 1993
  • Байрамов Б.И.
  • Воронов Ю.И.
  • Денисов О.В.
  • Зайко В.П.
  • Исхаков Ф.М.
  • Карнаухов В.Н.
  • Середенин В.А.
  • Серый В.Ф.
  • Слепова Л.В.
  • Цирлин В.М.
RU2082785C1
СПЛАВ ДЛЯ ОБРАБОТКИ РАСПЛАВОВ ЖЕЛЕЗА В ПРОЦЕССАХ ЧЕРНОЙ МЕТАЛЛУРГИИ 2022
  • Неретин Сергей Николаевич
  • Иванушкин Федор Алексеевич
  • Казакова Екатерина Александровна
RU2786778C1
РУДНО - ТЕРМИЧЕСКАЯ ЭЛЕКТРОПЕЧЬ С ГОРЯЧЕЙ ПОДИНОЙ И СИЛЬНОТОЧНЫМ ТОКОПОДВОДОМ 2013
  • Кузьменко Анатолий Григорьевич
  • Фролов Юрий Федорович
  • Поздняков Михаил Аексеевич
RU2550983C1
Способ получения карбида кальция и шихты для его получения 2022
  • Николаев Михаил Дмитриевич
  • Кондратьев Виктор Викторович
  • Немаров Александр Алексеевич
RU2809025C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА КАЛЬЦИЯ 2008
  • Фрайман Григорий Борисович
RU2371385C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В ПОДОВОМ СТАЛЕПЛАВИЛЬНОМ АГРЕГАТЕ 2005
  • Жульев Сергей Иванович
  • Фоменко Алексей Петрович
  • Гузенков Сергей Александрович
RU2285726C1
СПОСОБ ВЫПЛАВКИ ТЕХНИЧЕСКОГО КРЕМНИЯ 2016
  • Дмитрий Константинович
  • Константин Сергеевич
RU2649423C1

Иллюстрации к изобретению RU 2 168 463 C2

Реферат патента 2001 года СПОСОБ ПОЛУЧЕНИЯ КАРБИДА КАЛЬЦИЯ

Изобретение относится к химической промышленности и может быть использовано при получении ацетилена. Готовят шихту из известняка с крупнокристаллической мраморизированной структурой (размер зерен кальцита 0,1-3 мм) и кокса. Шихту загружают в руднотермическую печь с круглой ванной, имеющей три электрода диаметром 350 мм. Плавление шихты ведут при периферийном сопротивлении электрода 1,17-1,67 Ом•см. Перед сливом расплав выдерживают 5-15 мин при периферийном сопротивлении 0,83-1,2 Ом•см. Выход высоколитражного карбида кальция 280-300 л/кг. Могут быть использованы электроды диаметром 400-500 мм. 2 табл.

Формула изобретения RU 2 168 463 C2

Способ получения карбида кальция в руднотермической печи, включающий приготовление шихты из известняка и кокса, загрузку шихты в печь, плавление шихты при поддержании заданных тока и рабочей мощности печи путем перемещения электрода и/или переключения ступеней трансформатора и периодический слив образовавшегося расплава, отличающийся тем, что плавление шихты ведут при периферийном сопротивлении электрода 1,17 - 1,67 Ом • см, а перед сливом расплав выдерживают в течение 5 - 15 мин при периферийном сопротивлении 0,83 - 1,2 Ом • см.

Документы, цитированные в отчете о поиске Патент 2001 года RU2168463C2

SU 1806991 A1, 07.04.1993
Способ получения карбида кальция 1961
  • Ершов В.А.
SU149410A1
УЧЕНИЯ КАРБИДА КАЛЬЦИЯ 0
SU350753A1
Способ получения карбида кальция 1977
  • Ершов Вадим Андреевич
  • Владимиров Валерий Александрович
  • Альперович Иосиф Григорьевич
  • Ефимова Ирина Сергеевна
  • Маймаков Камзабек Кульбаевич
  • Степанова Людмила Вилениновна
SU631447A1
RU 95117025 A1, 20.04.1996
СПОСОБ ПРОИЗВОДСТВА КАРБИДА КАЛЬЦИЯ 1992
  • Ярославцев Юрий Григорьевич[Ua]
  • Курдюков Анатолий Анатольевич[Ua]
  • Сочнев Александр Егорович[Ua]
  • Иванов Евгений Анатольевич[Ua]
  • Буга Илья Дмитриевич[Ua]
  • Пьяных Сергей Анатольевич[Ua]
RU2040467C1
МИЛЛЕР С.А
Ацетилен, его свойства, получение и применение
Т
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
- Л.: Химия, 1969, с
Гидравлическая или пневматическая передача 0
  • Жнуркин И.А.
SU208A1
US 4213955 A, 22.07.1980
СПОСОБ ПРОИЗВОДСТВА ПЛОДОВО-ЯГОДНОГО ПЮРЕ 2003
  • Квасенков О.И.
RU2255562C2
Устройство для прокатки изделий из порошка 1956
  • Семенов Ю.Н.
SU112325A1

RU 2 168 463 C2

Авторы

Арлиевский М.П.

Владимиров В.А.

Ильин В.А.

Пахотин О.И.

Селин Е.Н.

Фомин В.А.

Даты

2001-06-10Публикация

1999-06-23Подача