Предлагаемое изобретение относится к технологии разделения изотопов, а конкретно - к физико-химическим методам обогащения в крупных масштабах кремния полупроводниковой чистоты тяжелым и легким стабильными изотопами в составе замкнутого цикла производства кремния. Кремний, обогащенный тяжелым изотопом 30Si, используется в производстве нейтронно-легированного кремния (Прохоров А. М. , Петров Г. Н., Лященко Б.Г., Гарусов Ю.В., Шевченко В.Г. "Способ получения ядерно-легированного кремния n-типа (варианты)", заявка на изобретение N 98105733/06(005471) от 19.03.1998), а обогащенный легким изотопом 28Si используется в производстве быстродействующих интегральных схем как материал, обладающий высокой теплопроводностью ("Se miconductor international. Lndustry News", v.21, N 3, March 1998).
Известен высокоэффективный метод разделения изотопов, а именно - их химический обмен при смешивании простых соединений, содержащих интересующий полиизотопный элемент (H ⇔ D: легкая и тяжелая вода в газообразном и жидком состояниях; 12C ⇔ 13C: цианистые соединения водорода и натрия в газообразном и жидком состояниях; другие пары простых соединений). В приведенных примерах конечный жидкий продукт (HxD2-xO; Na12Cx 13C1-xN) обогащен тяжелым изотопом (D или 13C), а газообразный - легким изотопом (H или 12C). Этот метод в ряде случаев применяют в промышленных масштабах. В лабораторных масштабах для получения малых количеств легких изотопов, а в "отвале" - тяжелых используют также родственный метод - дистилляции жидкофазных носителей изотопов (Стефенсон Д. Введение в ядерную технику. М., ГИТТЛ, 1956, с. 437-438; Боресков Г.К., Катальников С.Г. Технология процессов химического обмена. Конспект лекций. М., МХТИ, 1974).
Основными недостатками названных методов, в т.ч. самого эффективного - метода химического обмена, являются следующие.
1. Ограничение легкими изотопами, для которых относительная величина разности атомных весов изотопов наиболее значительна.
Так, для легкого и тяжелого водорода в воде коэффициент разделения близок к 4; для обмена 12C ⇔ 13C в реакциях названных выше цианистых соединений этот коэффициент равен уже 1,013. Коэффициент разделения существенно зависит также от температуры и давления, при которых проводится реакция обмена. В основном по причине N 1 метод химического обмена для разделения изотопов кремния в настоящее время не применяют.
2. Ограничения из-за высоких затрат сырья.
Это ограничение сводится на нет при организации замкнутого химического цикла в крупномасштабном производстве. При этом вышеперечисленные методы не позволяют производить разделение кремния на фракции. Таким образом, в известном уровне техники аналоги заявленного изобретения не обнаружены.
Существо предлагаемого изобретения состоит в использовании в качестве носителей интересующих изотопов, 30Si (3,12% в естественной смеси) и 28Si (92,18%), в первом случае - двухатомных по кремнию молекул жидкого дисилана Si2H6, а во втором случае - молекул газообразного моносилана SiH4 (см. фиг. 1). Как показывает таблица, в "тяжелом дисилане" содержатся изотопические молекулы весом от 66 до 64 а.е.м. и имеет место высокая относительная концентрация изотопа 30Si, равная ≈ 27,4%. В то же время в "легком дисилане" содержатся изотопические молекулы весом 63 и 62 а.е.м., в составе которых изотоп 30Si отсутствует вообще. Таким образом, при смешивании жидкого дисилана Si2H6 и газообразного моносилана SiH4 химический обмен, состоящий в замещении легких изотопов кремния (28Si, 29Si) в молекулах жидкого дисилана тяжелым изотопом 30Si, переходящим из газообразного моносилана, является энергетически выгодным, что подтверждается расчетом изотопических сдвигов колебательных уровней в молекулах силана и дисилана.
В то же время приемлемая скорость процесса разделения изотопов может быть обеспечена лишь в том случае, когда требуемые обмены изотопами будут осуществляться в одновременно идущих двух реакциях с радикалами: 1) преимущественное соединение в молекулу дисилана двух радикалов .SiH3, содержащих тяжелые изотопы кремния; 2) преимущественное соединение в молекулу моносилана ионов водорода и таких же радикалов .SiH3, но содержащих легкие изотопы кремния. Тяжелые продукты первой реакции, т.е. молекулы "тяжелого дисилана", оседают на центрах конденсации жидкой фазы, в то время как обогащенные легкими изотопами кремния газообразные моносилан и дисилан уносятся в более нагретую часть реактора. По сути дела, используется известная технология получения дисилана из моносилана, который диссоциирует в тихом электрическом разряде (Жигач А.Ф., Стасиневич Д.С. Химия гидридов. Л., 1969, с. 585). Наиболее существенное отличие состоит в том, что смесь силанов, образующуюся в разрядной камере, подвергают фракционированной конденсации не после сбора этой смеси, а в процессе ее образования и перемещения в направлении градиента температуры. Фазовая P-T-диаграмма дисилана, приведенная на фиг. 2, позволяет производить тонкую регулировку процесса обмена изотопами и оптимизировать его.
Из холодильников отбирают жидкофазный дисилан, обогащенный изотопом 30Si, а газообразную смесь "легкого дисилана" и моносилана пускают в разрядную камеру, в новый цикл. Восполнение моносилана на входе разрядной камеры не представляет проблемы, если в качестве основного метода промышленного получения поликристаллического кремния полупроводниковой чистоты используют метод пиролиза моносилана, т.к. в этом случае превышение веса основного реагента над весом конечного продукта составляет ≈ 14% (Фторидная технология моносилана и поликремния. Радиевый институт им В.Г. Хлопина, СПб, 1998).
Пример.
Создана цельнопаянная установка, позволяющая получать за 1 сутки ≈ 4г жидкого дисилана, обогащенного изотопом 30Si до 12%. Первичный ввод моносилана в разрядную камеру и эмпирический подбор режима потребовал несколько суток. Сбор газообразного "отвала", а также жидкого конденсата, накапливающегося в охлаждаемых при разных температурах ловушках, производили ежесуточно - для определения скорости накопления интересующих изотопов и оптимизации прогресса. Пользовались жидким азотом и охлаждающими смесями - твердой двуокисью углерода с толуолом или с петролейным эфиром.
Оценки показывают, что для увеличения обогащения жидкого дисилана изотопом 30Si до 27,4% ("тяжелый дисилан") и для перехода к промышленному производству нейтронно-легированного изотопического кремния (≈ 60 кг в сутки) коэффициент масштабирования процесса должен быть порядка 105, т.е. требуется создание по меньшей мере двух опытных полупромышленных установок с последовательным увеличением производительности.
Анализ патентной литературы показал, что предложенный способ обладает элементами новизны и соответствует критерию "изобретательский уровень".
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ | 2003 |
|
RU2318582C2 |
СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ КРЕМНИЯ | 2021 |
|
RU2778866C1 |
СПОСОБ ПОЛУЧЕНИЯ ЯДЕРНО-ЛЕГИРОВАННОГО КРЕМНИЯ n-ТИПА (ВАРИАНТЫ) | 1998 |
|
RU2145128C1 |
СПОСОБ ПОЛУЧЕНИЯ МОНОСИЛАНА И ДИСИЛАНА | 1999 |
|
RU2160706C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПНО-ОБОГАЩЕННЫХ СТЕКЛООБРАЗНЫХ ДИОКСИДОВ КРЕМНИЯ | 2018 |
|
RU2692310C1 |
СПОСОБ ИЗОТОПНОГО ОБОГАЩЕНИЯ | 2006 |
|
RU2399409C2 |
СПОСОБ ПРОВЕДЕНИЯ ГОМОГЕННЫХ И ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ С ИСПОЛЬЗОВАНИЕМ ПЛАЗМЫ | 2002 |
|
RU2200058C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ, СОДЕРЖАЩИХ КРЕМНИЕВУЮ ПОДЛОЖКУ С ПЛЕНКОЙ ИЗ КАРБИДА КРЕМНИЯ НА ЕЕ ПОВЕРХНОСТИ И РЕАКТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2013 |
|
RU2522812C1 |
Способ получения особочистого высокообогащенного изотопа кремний-28 | 2018 |
|
RU2693786C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПНООБОГАЩЕННОГО ТЕТРАХЛОРИДА КРЕМНИЯ | 2016 |
|
RU2618265C1 |
Предлагаемое изобретение относится к технологии разделения изотопов при крупномасштабном производстве кремния полупроводниковой чистоты. Технический результат: снижение затрат сырья при организации замкнутого химического цикла в крупномасштабном производстве. Сущность изобретения: осуществляют химический обмен между простыми кремнийсодержащими соединениями - газофазным веществом SiH4 и жидкофазным веществом Si2H6. Используют известную технологию получения дисилана из моносилана. В процессе обмена вещество SiH4 обогащается легким изотопом 28Si, а вещество Si2H6 - тяжелым изотопом 30Si. Дисилан образуется из моносилана после прохождения области тихого электрического разряда и охлаждаемых ловушек. Оптимизацию процесса осуществляют регулированием давления и температуры реагентов в соответствии с Р-Т диаграммой фазового состояния дисилана. Отбор обогащенных фракций и восполнение расходуемого реагента производят без остановки производства. Процесс получения изотопических фракций "тяжелого дисилана" и "легкого моносилана" является замкнутым. 2 ил., 1 табл.
Способ разделения в крупных масштабах кремния на фракции, обогащенные тяжелым 30Si и легким 28Si изотопами, заключающийся в химическом обмене между простыми кремнийсодержащими соединениями - газофазным веществом SiH4 и жидкофазным веществом Si2H6, обогащающимися в процессе обмена соответственно легким 28Si и тяжелым 30Si изотопами, причем носителем исходного полиизотопного кремния выбран основной реагент в промышленном методе получения кремния полупроводниковой чистоты - газофазный моносилан, являющийся после выхода из реактора также преимущественно носителем легкого изотопа 28Si, а преимущественным носителем тяжелого изотопа 30Si выбран жидкофазный дисилан, образующийся из моносилана после прохождения области тихого электрического разряда и охлаждаемых ловушек, при этом оптимизацию процессов получения дисилана из моносилана в электрическом разряде и химического обмена изотопами в ионизированной смеси осуществляют регулированием давления и температуры реагентов в соответствии с Р - Т диаграммой фазового состояния дисилана, а процесс производства изотопических фракций "тяжелого дисилана" и "легкого моносилана", при котором отбор обогащенных фракций и восполнение расходуемого реагента производят без остановки производства, является замкнутым.
УСТРОЙСТВО ДЛЯ ПРОДОЛЬНОГО ПЕРЕМЕЩЕНИЯ РЕЛЬСОВ ЖЕЛЕЗНОДОРОЖНОГО ПУТИ | 1991 |
|
RU2015241C1 |
US 4849075 A, 18.07.1989 | |||
ПНЕВМОИНДУКЦИОННЫЙ СЕПАРАТОР | 2004 |
|
RU2275247C1 |
АНДРЕЕВ Б.М | |||
и др | |||
Разделение стабильных изотопов физико-химическими методами | |||
- М.: Энергоатомиздат, 1982, с.107-113 | |||
КОЩЕЕВ Н.А., ДЕРГАЧЕВ В.А | |||
Электромагнитное разделение и изотопный анализ | |||
- М.: Энергоатомиздат, 1989, с.87. |
Авторы
Даты
2001-07-20—Публикация
2000-02-17—Подача