СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КОЛЕБАНИЙ ВРАЩАЮЩЕГОСЯ РОТОРА Российский патент 2002 года по МПК G01M1/22 B04B9/14 

Описание патента на изобретение RU2180435C2

Изобретение способ относится к области техники измерений колебаний вращающегося ротора (прецессионные, осевые и т.п.).

При вращении ротора могут возникать его регулярные колебания, которые в ряде случаев приводят к повреждениям машин. Появление колебаний может отражать как определенные режимы эксплуатации, так и дефекты отдельных узлов. В связи с этим, особенно на высокоскоростных центрифугах, есть необходимость регистрации колебаний ротора.

Эта проблема может быть решена путем установки специальных датчиков перемещений, вибраций [1]. Обычно параметры центрифуг выбирают такими, чтобы в рабочем диапазоне эксплуатационных параметров колебания с частотой вращения, вызванные дисбалансом, были минимальными, а другие колебания отсутствовали, и в этих центрифугах нет необходимости непрерывного контроля. Поэтому установка на такие центрифуги отдельных датчиков, ведущая к дополнительным затратам, нецелесообразна. К тому же конструкция датчиков может быть достаточно сложной из-за необходимости работы в агрессивных средах, вакууме, при повышенных температурах и т.п.

Наиболее близким техническим решением к предложенному является решение [2]. Согласно этому решению на центрифугу устанавливают по меньшей мере один датчик колебаний, причем считают преимуществом установку датчика вне рабочей камеры, т. е. на корпусе. При работе центрифуги проводят частотный анализ сигнала этого датчика. В спектре сигнала датчика колебаний будут присутствовать гармоники с частотой вращения и частотами других колебаний центрифуги. Из спектра выделяют отдельные гармонические колебания и по ним определяют интенсивность (амплитуду) колебаний центрифуги.

Техническое решение [2] имеет ряд недостатков. Во-первых, необходима установка дополнительного датчика колебаний, приводящая к дополнительным затратам. Во-вторых, рассматривают в спектре только гармоники с частотами выбранных гармонических колебаний, что не позволяет определить вид колебаний и в большинстве случаев имеет низкую чувствительность. В-третьих, датчик располагается фактически вне рабочей камеры и фиксирует колебания корпуса, передаваемые ему ротором через опоры. В этом случае амплитуды гармоник с частотами колебаний хотя и связана с интенсивностью колебаний ротора, однако на эту связь существенно влияет опора, состояние которой может меняться в процессе эксплуатации.

Если датчик колебаний является дополнительным, то датчик скорости вращения есть практически у каждой центрифуги. Наибольшее распространение получили импульсные тахометры угловой скорости, основу которых составляют различные датчики близости или оптические датчики [1]. Для работы этих датчиков требуется, чтобы на вращающемся теле находились в движении одна или несколько меток с резкими изменениями магнитных или оптических свойств. Большинство реальных конструкций таких датчиков чувствительны к изменениям расстояния между их вращающейся и неподвижной частями, что приводит к появлению модуляции основного сигнала датчика, частота которого определяется частотой вращения и числом меток. При наличии колебаний ротора сигнал модулируется частотой колебаний, а уровень модуляции связан с амплитудой колебаний.

Известно, что в спектре сигнала, модулированного по амплитуде или по фазе, около основной частоты на расстояниях модулирующей частоты присутствуют симметричные боковые полосы, при одновременной амплитудно-фазовой модуляции с одинаковой частотой симметрия боковых полос нарушается [3].

Техническая задача, решаемая заявляемым изобретением, состоит в том, чтобы упростить технологию определения амплитуд и вида колебаний ротора центрифуги при одновременном увеличении чувствительности измерений.

Поставленная задача решается тем, что в известном способе определения частоты и интенсивности колебаний центрифуги, включающем получение сигнала датчика колебаний и частотный спектральный анализ этого сигнала для определения интенсивности колебаний, рассматривают в спектре сигналов преимущественно датчиков оборотов частотные составляющие, связанные с амплитудной и фазовой модуляцией, имеющей разный характер при различных видах колебаний ротора, путем измерений амплитуд основной гармоники с частотой Ω и боковых полос с частотами Ω-ωi,Ω+ωi (левая, правая боковые полосы), где ωi - частота i-го вида колебаний.

Уровни и характер модуляции зависят от типов и конструкций датчиков, но во всех случаях в спектрах будут наблюдаться около основной частоты боковые полосы, однозначно связанные с параметрами колебаний, и эта связь может устанавливаться экспериментально или теоретически из рассмотрения схемы движения колеблющейся вращающейся части ротора относительно не вращающегося датчика.

Для электромагнитных датчиков с изменяемым магнитным сопротивлением типа, изображенного на фиг.1, когда в катушке 1 создается переменная электродвижущая сила за счет вращения связанного с ротором индуктора 2 в поле постоянного магнита 3, в случае осевых колебаний амплитуды левой и правой боковых полос равны, в случае круговых (прецессионных) движений - существенно различны. В зависимости от того, какая из боковых полос в паре (правая или левая) больше, определяют направление прецессионных движений. При больших амплитудах колебаний наблюдаются несколько пар боковых полос. Амплитуда колебаний ротора, в пределах линейной зависимости уровней модуляции от амплитуды колебаний, определяют:
- для осевых колебаний

где АВ - амплитуда осевых колебаний; С - определяемая конструкцией датчика постоянная; U1 - значение первой пары боковых полос; МВ - коэффициент амплитудной модуляции при осевом смещении; U0 - значение основной гармоники,
- для круговых движений


где Ак - амплитуда прецессионных движений; Uп, Uл - значение правой и левой пары боковых полос; Мк, Кк - коэффициенты амплитудной и фазовой модуляций при радиальном смещении.

На фиг.2 приведен спектр сигнала датчика оборотов центрифуги с ротором, совершающим осевые колебания и прецессионные движения в направлении своего вращения. Наличие вертикальных колебаний видно из пары боковых полос с одинаковыми амплитудами U1, а наличие прецессии в направлении вращения ротора видно из пары боковых полос с амплитудами Uп, Uл, где Uп>Uл.

На фиг.3 приведен спектр сигнала датчика оборотов центрифуги с ротором, совершающим прецессионные движения. Наличие фазовой модуляции приводит к тому, что в спектрах типа фиг.3 амплитуда, по меньшей мере, одной полосы в первой паре боковых полос Uп или Uл больше амплитуды гармоники Uω с частотой колебаний ω. В случае фиг.3, где амплитуды гармоник изображены в логарифмическом масштабе и значение Uω отмечено пунктирной линией, Uпбольше Uω в ~8 раз, что свидетельствует о таком же увеличении чувствительности предложенного способа.

Таким образом, благодаря рассмотрению в спектре сигналов датчиков центрифуги, например датчиков оборотов, вызванных модуляцией сигнала с частотой колебаний центрифуги боковых полос около основной гармоники, улучшается технология определения амплитуд колебаний центрифуги, появляется возможность определения вида колебаний при одновременном повышении чувствительности измерений.

Источники информации
1. Ж. Аш. Датчики измерительных систем. М.: Мир, 1992г.

2. Патент ФРГ N 4327291, кл. B 04 B 11/04, 1993.

3. А. Анго. Математика для электро-и радиоинженеров. М.: Наука, 1965.

Похожие патенты RU2180435C2

название год авторы номер документа
ЦЕНТРИФУГА ДЛЯ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ 2001
  • Захаров Г.В.
  • Захаров С.В.
RU2217240C2
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКИХ УСТРОЙСТВ 2003
  • Некрасов Я.А.
  • Моисеев Н.В.
RU2244271C1
УСТАНОВКА ДЛЯ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ УГЛЕРОДНОГО ВОЛОКНИСТОГО МАТЕРИАЛА В ГАЗОВОЙ АТМОСФЕРЕ 1999
  • Захаров Г.В.
  • Захаров С.В.
RU2175696C2
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МНОГОРЯДОВОЙ КАТУШКИ ИЗ КРУГЛОГО ИЗОЛИРОВАННОГО ПРОВОДА 1998
  • Алешин Р.И.
  • Токарев А.М.
  • Алешин И.Р.
RU2146072C1
ИЗМЕРИТЕЛЬ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ АНАЛОГОВЫХ ПЕРЕМНОЖИТЕЛЕЙ СИГНАЛОВ 2011
  • Зенькович Алексей Вячеславович
  • Балло Виктор Львович
  • Добровольский Валентин Борисович
RU2457496C1
ФАЗОВЫЙ ПАРАМЕТРИЧЕСКИЙ ГИДРОЛОКАТОР БОКОВОГО ОБЗОРА 1992
  • Яковлев А.Н.
  • Гуляев Н.В.
  • Кочергин О.К.
  • Новик А.Н.
  • Утробин С.Г.
  • Мосягин А.А.
RU2039366C1
АППАРАТ ДЛЯ ТВЕРДОФАЗНОЙ РЕЭКСТРАКЦИИ 1993
  • Лепихин П.П.
RU2077361C1
СПОСОБ ПРЯМОГО ФОРМИРОВАНИЯ ОБМОТКИ МНОГОРЯДОВОЙ КАТУШКИ ИЗ КРУГЛОГО ИЗОЛИРОВАННОГО ПРОВОДА 1998
  • Алешин Р.И.
  • Токарев А.М.
  • Алешин И.Р.
RU2137279C1
СПОСОБ ЦИФРОВОГО УПРАВЛЕНИЯ КЛЮЧЕВЫМ ГЕНЕРАТОРНЫМ УСТРОЙСТВОМ УЛЬТРАЗВУКОВОГО ДИАПАЗОНА 2019
  • Александров Владимир Александрович
  • Калашников Сергей Александрович
  • Ермолаева Екатерина Юрьевна
RU2718003C1
ФАЗОВЫЙ ПАРАМЕТРИЧЕСКИЙ ГИДРОЛОКАТОР 1995
  • Гуляев Н.В.
  • Кочергин О.К.
  • Новик А.Н.
  • Яковлев А.Н.
RU2097785C1

Иллюстрации к изобретению RU 2 180 435 C2

Реферат патента 2002 года СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КОЛЕБАНИЙ ВРАЩАЮЩЕГОСЯ РОТОРА

Изобретение относится к способам определения параметров колебаний вращающегося ротора центрифуги, преимущественно высокоскоростной, необходимых для выявления эксплуатации параметров центрифуги и дефектов ее узлов. Согласно предложенному способу, частота, амплитуда и вид колебаний определяются из частотного спектра датчика, например датчика оборотов, по значениям боковых полос, вызванных модуляцией основного сигнала частотой колебаний ротора. Способ характеризуется упрощенной технологией определения амплитуд и вида колебаний ротора центрифуги и обеспечивает повышенную чувствительность измерений. 2 з.п. ф-лы. 3 ил.

Формула изобретения RU 2 180 435 C2

1. Способ определения параметров колебаний вращающегося ротора центрифуги по частотному спектру сигнала датчика, например датчика скорости вращения, отличающийся тем, что в спектре сигнала датчика измеряют амплитуды гармоник с основной частотой Ω и боковых полос с частотами Ω-n•ωi, Ω+n•ωi, где ωi - частота i-го вида колебаний, n - целое положительное число, по отношению амплитуд гармоник с частотами Ω-n•ωi, Ω+n•ωi идентифицируют вид колебаний и по этим же амплитудам гармоник рассчитывают амплитуды колебаний ротора. 2. Способ по п. 1, отличающийся тем, что для датчиков электромагнитного типа, когда в катушке создается переменная электродвижущая сила за счет вращения в магнитном поле связанного с ротором индуктора, получают спектр сигнала, измеряют значения боковых полос и при равенстве значений в каждой паре боковых полос идентифицируют колебания как осевые, рассчитывают амплитуду, по формуле

где AB - амплитуда осевых колебаний ротора;
С - определяемая конструкцией датчика постоянная;
U1 - амплитуда гармоник в первой паре боковых полос;
МB - коэффициент амплитудной модуляции при осевом смещении ротора;
U0 - значение основной, кратной частоте вращения ротора, гармоники.
3. Способ по п. 1, отличающийся тем, что для датчиков электромагнитного типа, когда в катушке создается переменная электродвижущая сила за счет вращения в магнитном поле связанного с ротором индуктора, получают спектр сигнала, измеряют амплитуды боковых полос и при существенных отличиях значений амплитуд левых и правых составляющих в парах боковых полос идентифицируют колебания как прецессионные движения в направлении, совпадающем или противоположном направлению вращения ротора, и рассчитывают амплитуду колебаний ротора по формуле


где АК - амплитуда прецессионных движений ротора;
UП, UЛ - амплитуды правой и левой гармоник в первой паре боковых полос;
МК, КК - коэффициенты амплитудной и фазовой модуляций при радиальном смещении ротора;
U0 - амплитуда основной, кратной частоте вращения ротора, гармоники.

Документы, цитированные в отчете о поиске Патент 2002 года RU2180435C2

DE 4327291 A1, 16.02.1995
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ДИСБАЛАНСА 1994
  • Китаев В.Б.
  • Королев И.А.
  • Подъяблонский М.П.
  • Смолов А.Ю.
  • Толмачев К.В.
RU2078320C1
Инвариантный радиоволновый уровнемер 1990
  • Лункин Борис Васильевич
  • Криксунова Нина Абрамовна
  • Терешин Виктор Ильич
SU1765708A1

RU 2 180 435 C2

Авторы

Белослудцева Е.К.

Воробьев С.А.

Ивакин В.А.

Даты

2002-03-10Публикация

1999-11-05Подача