СПОСОБ ИЗМЕРЕНИЯ СВЕРХМАЛОЙ ВЫСОТЫ ПОЛЕТА САМОЛЕТА, ПРЕИМУЩЕСТВЕННО ГИДРОСАМОЛЕТА, НАД ВОДНОЙ ПОВЕРХНОСТЬЮ И ПАРАМЕТРОВ МОРСКОГО ВОЛНЕНИЯ Российский патент 2002 года по МПК G01C5/00 G01C13/00 G01D5/24 G01D21/02 

Описание патента на изобретение RU2183010C2

Изобретение относится к области авиационного приборостроения и может быть использовано для создания систем автоматизированного управления параметрами полета, зависящими от его текущей высоты и параметров морского волнения, в частности для автоматизации посадки (приводнения) гидросамолета на гладкую и на взволнованную поверхность.

Существуют различные способы определения высоты полета самолета (гидросамолета), например, барометрический, и способы определения высоты полета с помощью изотопных и лазерных высотомеров. Известен барометрический способ определения высоты полета самолета путем учета статического давления вблизи самолета и параметров состояния атмосферы у земли (давление и плотность воздуха) (см. "Летные испытания самолетов" М.Г.Котик и др., Машиностроение, 1968 г.). Недостатком данного способа является то, что при полете с дозвуковой скоростью перед фюзеляжем, крылом и другими частями самолета (гидросамолета) образуется зона повышенного давления. Эта зона настолько велика, что вынести на штанге ПВД (приемник воздушного давления) за ее пределы практически не удается. Поэтому в статическую камеру ПВД подается местное статическое давление, большее по величине, чем атмосферное статическое давление воздуха. При полете самолета на высотах, меньших размаха крыла, значительные погрешности в определении барометрической высоты вносит аэродинамическое влияние экрана (водной или земной поверхности) на поле скоростей и давлений вблизи самолета. Для точного измерения малых высот полета используют изотопные высотомеры. Для этого вдоль ВПП (взлетно-посадочной полосы) располагают датчики, содержащие радиоактивный элемент, а на самолете устанавливают оборудование, позволяющее определять точную высоту нахождения летательного аппарата над ВПП но интенсивности излучения. Однако с помощью таких высотомеров не решают задачу определения высоты полета гидросамолета при посадке на неподготовленную водную акваторию.

Наиболее близким к заявляемому является известный и широко применяемый радиолокационный способ измерения высоты полета, основанный на регистрации полей излучения (полей дальней зоны), создаваемых и принимаемых антенной, установленной на самолете (гидросамолете). К классу устройств, использующих данный принцип, относятся радиовысотомеры (см. "Летная эксплуатация радионавигационного оборудования самолетов", И.Е.Бондарчук, Транспорт, 1978 г. стр. 112-152). Особенность этого способа заключается в том, что возникает рост погрешности измерений с уменьшением высоты полета. Уменьшение погрешности достигается путем значительного усложнения аппаратуры.

Аналогами способа измерения параметров морского волнения могут служить контактные методы измерения, которые используются, например, в п. N 1584513. Однако измерение в этом случае может быть произведено при нахождении гидросамолета на плаву, т.е. уже после посадки на воду.

Наиболее близкими к заявляемому способу измерения параметров морского волнения могут быть радиолокационные методы зондирования морской поверхности (см. "Радиолокация морской поверхности", А.А.Гарнакерьян, А.С.Сосунов, Изд. Ростовского университета, 1978 г. ). На основе этих методов создано устройство a.c. 805745, G 01 C 13/00 "Устройство для измерения параметров морских волн". Однако это устройство позволяет получить характеристики волнения при полете самолета на большой высоте. В заявляемом способе для устранения такого недостатка предлагается использовать поля ближней зоны, создаваемые антенной. Эти поля имеют квазистатический характер, значит для описания свойств антенны, обусловленных ими, допустимо использовать язык и понятия теории электрических цепей. Поля ближней зоны возрастают гораздо быстрее полей дальней зоны при уменьшении расстояния до своего источника (до антенны). Это и дает основание полагать, что погрешность измерений будет уменьшаться при снижении высоты полета. При удалении же от своего источника поля ближней зоны убывают гораздо быстрее полей дальней зоны, поэтому способ измерения высоты полета и параметров морского волнения, основанный на регистрации полей ближней зоны, может использоваться, в отличие от радиолокационных измерителей, только на очень малых высотах полета: меньше размаха крыла гидросамолета.

Задачей предлагаемого изобретения является повышение безопасности посадки самолета, преимущественно гидросамолета, за счет автоматического выдерживания заданной для данного типа летательного аппарата вертикальной скорости.

Поставленная задача достигается тем, что в способе измерения сверхмалой высоты полета самолета, преимущественно гидросамолета, и параметров морского волнения, основанном на регистрации физических величин, зависящих от электромагнитного поля, создаваемого установленной на самолете антенной, создается последовательный LC-контур с образованным в поле ближней зоны антенны конденсатором, одной из обкладок которого является антенна, а другой - корпус самолета, включают данный LC-контур в одно из плеч мостовой схемы, подается на вход мостовой схемы стабилизированное по амплитуде и частоте гармоническое напряжение и судят о высоте полета самолета над водным зеркалом по амплитуде снимаемого с мостовой схемы гармонического сигнала, а при взволнованной водной поверхности снимаемый с мостовой схемы сигнал детектируют, выделяют из продетектированного сигнала и измеряют постоянную и переменную составляющие, при этом о высоте полета самолета судят по постоянной составляющей, о высоте морской волны по амплитуде низкочастотной переменной составляющей, а о длине морской волны в направлении полета и в месте, над которым пролетает самолет, - по частному oт деления горизонтальной скорости самолета на частоту низкочастотной переменной составляющей. При этом индуктивность последовательного LC-контура выбирают из условия попадания резонансной частоты LC-контура при высоте полета самолета выше 50-100 м в диапазон 1,5-6 МГц.

Величина емкости С зависит от высоты полета. При очень большой высоте полета она равна С0, где С0 - емкость LC-контура на большой высоте, при этом резонансная частота LC0-контура равна f0. С понижением высоты полета величина емкости С возрастает и становится равной: C = C0+ΔC, где ΔC - добавочная емкость - возрастает с уменьшением высоты и стремится к нулю при неограниченном возрастании высоты полета.

Таким образом, δf - уход резонансной частоты LC-контура при снижении высоты полета самолета (гидросамолета) имеет вид:

т. е. он резко возрастает при снижении высоты полета. Однако в очень большом диапазоне изменения емкости ΔCδf - уход резонансной частоты - практически пропорционален амплитуде гармонического сигнала Uc(t), где Uc(t) - сигнал, снимаемый со средних точек мостовой схемы, изображенной на чертеже, на вход которой подается гармоническое напряжение U(t) стабилизированной частоты f0 и амплитуды Um. При этом сопротивление r в нижней части мостовой схемы, содержащей последовательный резонансный L(C0+ΔC) - контур, равно:

где: Q - добротность контура, совпадающая с добротностью индуктивной катушки;
L - индуктивность.

На схеме L и (C0+ΔC) - идеальные (т.е. без потерь) индуктивность и емкость, а сопротивление r в верхней части плеча мостовой схемы, содержащей резонансный последовательный L(C0+ΔC)-контур, есть эквивалентное активное сопротивление реальной катушки индуктивности, вычисляемое через ее индуктивность L и добротность Q по вышеуказанной формуле. Если полет происходит над взволнованной морской поверхностью, сигнал Uc(t) (см. чертеж) необходимо дополнительно подвергнуть детектированию с последующим выделением постоянной и переменной (низкочастотной) составляющих, т.к. при строго горизонтальном полете величина добавочной емкости ΔC периодически меняется, достигая максимального значения над гребнем морской волны и минимального - над впадиной, и сигнал Uc(t) можно считать амплитудно-модулированным радиотехническим сигналом. При его детектировании амплитуда постоянной составляющей будет пропорциональна средней высоте полета над взволнованной морской поверхностью, амплитуда переменной (низкочастотной) составляющей - высоте морской волны с коэффициентом пропорциональности, зависящем от средней высоты полета, а частота низкочастотной переменной составляющей (т.е. частота огибающей сигнала) позволит найти длину морской волны в направлении полета путем деления известной горизонтальной скорости самолета на значение этой частоты. Таким образом, в силу того, что на очень малых высотах полета горизонтальная скорость самолета гораздо больше его вертикальной скорости, можно непрерывно следить за высотой полета и параметрами морского волнения в месте, над которым самолет в данный момент находится.

Заявляемый способ позволяет измерять параметры морских волн непосредственно перед посадкой гидросамолета на воду. Кроме того, этот способ позволит объединить в одном устройстве, как высотомер сверхмалых высот, так и измеритель параметров морского волнения.

Похожие патенты RU2183010C2

название год авторы номер документа
ЕМКОСТНЫЙ ДАТЧИК СВЕРХМАЛЫХ ВЫСОТ ПОЛЕТА ГИДРОСАМОЛЕТА 2001
  • Мушенко А.С.
  • Самоделкова В.В.
  • Мушенко А.С.
  • Калюжный Г.Г.
  • Явкин А.В.
  • Лобач В.Т.
  • Долбня Л.А.
RU2196077C2
СПОСОБ ИЗМЕРЕНИЯ СВЕРХМАЛОЙ ВЫСОТЫ ПОЛЕТА САМОЛЕТА ПРЕИМУЩЕСТВЕННО ГИДРОСАМОЛЕТА, НАД ВОДНОЙ ПОВЕРХНОСТЬЮ И ПАРАМЕТРОВ МОРСКОГО ВОЛНЕНИЯ 2014
  • Ванаев Анатолий Петрович
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Антон Владимирович
  • Червякова Нина Владимировна
  • Мелюшенок Сергей Петрович
RU2557999C1
СИСТЕМА УПРАВЛЕНИЯ УГЛОМ ТАНГАЖА САМОЛЕТА-АМФИБИИ ПРИ ДВИЖЕНИИ ПО ВОДЕ В РЕЖИМЕ ГЛИССИРОВАНИЯ 2004
  • Бондарец Анатолий Яковлевич
RU2268157C1
СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ МОРСКИХ ВОЛН С БОРТА ДВИЖУЩЕГОСЯ СУДНА 2014
  • Ванаев Анатолий Петрович
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Антон Владимирович
  • Червякова Нина Владимировна
RU2563314C1
ОТСЕК КАБИНЫ ЛЕТАТЕЛЬНОГО АППАРАТА СО СБОРНО-РАЗБОРНЫМ ТРАПОМ-НАСТИЛОМ 1999
  • Шапошников В.И.
RU2160210C1
ПОЛУАВТОМАТИЧЕСКАЯ СИСТЕМА ПРЕДОТВРАЩЕНИЯ ВЫХОДА УГЛА ТАНГАЖА САМОЛЕТА ЗА ПРЕДЕЛЫ ЭКСПЛУАТАЦИОННОГО ДИАПАЗОНА 2011
  • Никитин Александр Игоревич
RU2490168C1
САМОЛЕТ-АМФИБИЯ (СА) 2000
  • Панатов Г.С.
  • Зданевич В.Г.
  • Принада И.М.
RU2171208C1
СИСТЕМА ПЕРЕМЕЩЕНИЯ БОРТОВОГО ПЛАВСРЕДСТВА ГИДРОСАМОЛЕТА 2005
  • Серебряков Виктор Алексеевич
RU2287453C1
СПОСОБ СНИЖЕНИЯ ВИБРАЦИОННОГО ВОЗДЕЙСТВИЯ СИЛОВОЙ УСТАНОВКИ ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Скорик Борис Прохорович
RU2574498C2
ОТСЕК ФЮЗЕЛЯЖА ЛЕТАТЕЛЬНОГО АППАРАТА С ПИЛОНАМИ ВНЕШНЕЙ ПОДВЕСКИ 1999
  • Шапошников В.И.
RU2176970C2

Иллюстрации к изобретению RU 2 183 010 C2

Реферат патента 2002 года СПОСОБ ИЗМЕРЕНИЯ СВЕРХМАЛОЙ ВЫСОТЫ ПОЛЕТА САМОЛЕТА, ПРЕИМУЩЕСТВЕННО ГИДРОСАМОЛЕТА, НАД ВОДНОЙ ПОВЕРХНОСТЬЮ И ПАРАМЕТРОВ МОРСКОГО ВОЛНЕНИЯ

Изобретение относится к авиационному приборостроению и предназначено для использования при создании систем автоматизированного управления параметрами полета, зависящими от его текущей высоты и параметров морского волнения, в частности для автоматической посадки (приводнения) гидросамолета на гладкую и на взволнованную поверхности. Новым в способе является то, что регистрируют поля ближней зоны антенны путем фиксации ухода δf резонансной частоты fo, например, последовательного LC-контура и измеряют его с помощью мостовой схемы. При взволнованной водной поверхности снимаемый гармонический сигнал подвергают детектированию, затем из продетектированного сигнала выделяют и измеряют постоянную и переменную составляющие. Данное изобретение позволяет объединить в одном устройстве высотомер сверхмалых высот и измеритель параметров морского волнения и решить задачу определения высоты полета гидросамолета при посадке на неподготовленную водную акваторию. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 183 010 C2

1. Способ измерения сверхмалой высоты полета самолета, преимущественно гидросамолета, над водной поверхностью и параметров морского волнения, основанный на регистрации физических величин, зависящих от электромагнитного поля, создаваемого установленной на самолете антенной, отличающийся тем, что создают последовательный LC-контур с образованным в поле ближней зоны антенны конденсатором, одной из обкладок которого является антенна, а другой - корпус самолета, включают данный LC-контур в одно из плеч мостовой схемы, подают на вход мостовой схемы стабилизированное по амплитуде и частоте гармоническое напряжение и судят о высоте полета самолета над водным зеркалом по амплитуде снимаемого с мостовой схемы гармонического сигнала, а при взволнованной водной поверхности снимаемый с мостовой схемы сигнал детектируют, выделяют из продетектированного сигнала и измеряют постоянную и переменную составляющие, при этом о высоте полета самолета судят по постоянной составляющей, о высоте морской волны - по амплитуде низкочастотной переменной составляющей, а о длине морской волны в направлении полета и в месте, над которым пролетает самолет, - по частному от деления горизонтальной скорости самолета на частоту низкочастотной переменной составляющей. 2. Способ по п. 1, отличающийся тем, что индуктивность последовательного LC-контура выбирают из условия попадания резонансной частоты LC-контура при высоте полета самолета выше 50 - 100 м в диапазон 1,5 6 МГц.

Документы, цитированные в отчете о поиске Патент 2002 года RU2183010C2

Бондарчук И.Е
и др
Летная эксплуатация радионавигационного оборудования самолетов
- М.: Транспорт, 1978, с.112-152
Устройство для измерения параметров волнения 1981
  • Степанюк Иван Антонович
SU1052869A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВЫСОТЫ МОРСКИХ ВОЛН С ЛЕТАТЕЛЬНОГО АППАРАТА 1994
  • Бухарин В.Д.
  • Кашевский В.В.
RU2104563C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ МОРСКИХ ВОЛН С ЛЕТАТЕЛЬНОГО АППАРАТА НА ПЛАВУ 1992
  • Прозоровский В.Е.
  • Бухарин В.Д.
  • Буряк В.А.
RU2046287C1

RU 2 183 010 C2

Авторы

Мушенко А.С.

Самоделкова В.В.

Мушенко А.С.

Панатов Г.С.

Явкин А.В.

Лобач В.Т.

Долбня Л.А.

Даты

2002-05-27Публикация

1999-07-27Подача