Изобретение относится к радиоспектроскопии ядерного магнитного резонанса (ЯМР) и может быть использовано в аналитической химии, экологии, анализе многокомпонентных водных растворов.
Известен способ измерения ЯМР в жидкостях, включающий введение исследуемой жидкости в пористый диэлектрик, помещаемый в датчик ЯМР, расположенный в постоянном магнитном поле, изменение величины напряженности постоянного магнитного поля до наступления ядерного магнитного резонанса и регистрацию сигнала ЯМР (а.с. СССР 811133; М. Кл. (3) G 01 N 27/78, Способ измерения ЯМР в жидкостях. Белоногов А. М., Колонтаевская Л. А. и др., заявл. 26.12.77. опубл. 07.03.81 г., БИ 9, с. 155).
Известное техническое решение предусматривает регистрацию спектров высокого разрешения и использование больших стационарных спектрометров ЯМР высокого разрешения.
Известен способ ЯМР для определения содержания парамагнитных металлов в водных растворах. Он основывается на измерении времен спин-спиновой (Т2) и спин-решеточной (Т1) релаксации на импульсном анализаторе ЯМР. При этом наблюдение ЯМР проводится на протонах воды непосредственно в растворе (Попель А. А. Применение ядерной магнитной релаксации в анализе неорганических соединений. - Казань: Изд-во Казанск. университета. 1975. - 173 с.), но результаты измерения в значительной степени зависят от влияния внешних факторов и стабильности работы аппаратуры.
Наиболее близким из аналогов является способ экспресс-анализа малых концентраций веществ в растворе методом ЯМР-релаксации, включающий измерение релаксационных параметров. При этом анализируемый раствор предварительно пропускают через сорбент, избирательный к исследуемому веществу и помещенный в перфорированный патрон, который располагают в датчике релаксометра для последующей регистрации аналитического сигнала с поверхности сорбента, при этом объем сорбента выбирают из условия максимального заполнения датчика релаксометра (а. с. 2022259 5 G 01 N 24/08. Способ экспресс-анализа малых концентраций веществ. Глебов А.Н., Журавлева Н.Е. Заявл. 28.02.92., опубл. 30.10.94. 5 с.).
Способ обладает рядом недостатков, среди которых определяющим является неточность способа, обусловленная нахождением усредненных значений времен спин-спиновой (Т2) и спин-решеточной (T1) релаксации для гетерогенных систем (сорбент - вода), так как описание многофазной релаксации (вызванной гетерогенностью) одной экспонентой приводит к значительным погрешностям измерения, и тем, что в качестве аналитического параметра используют времена Т2 и Т1, зависимые от влияний температуры, содержания растворенного в воде кислорода, количества удерживаемой сорбентом воды и стабильности работы аппаратуры.
Техническая задача заключается в повышении точности способа за счет уменьшения влияния внешних факторов и стабильности работы аппаратуры на результат анализа.
Для решения технической задачи анализируемый раствор предварительно пропускают через сорбент, помещенный в перфорированный патрон. Патрон с сорбентом помещают в датчик анализатора и измеряют релаксационные характеристики протонов (Т1, Т2. А). Полученную экспериментальную огибающую сигналов спинового эха протонов разделяют на экспоненциальные компоненты по известной методике (Clarke А. Н., Lillford P. J. // J. Magn. Reson. 1980. V. 41. 1. Р. 42) и в качестве аналитического параметра используют отношение значения амплитуды сигнала ЯМ-релаксации первой компоненты к сумме амплитуд всех компонент.
Набухший в дистиллированной воде сорбент имеет определенные аналитические релаксационные характеристики протонов воды (Т1 o, Т2 o, Аo), которые изменяются при пропускании через слой сорбента раствора с парамагнитным ионом. Причем времена спин-спиновой и спин-решеточной релаксации изменяются пропорционально концентрации парамагнитных ионов, но в значительной степени зависят от количества гидратной воды и температуры. Соотношение амплитуды первой экспоненциальной компоненты (A1) к сумме амплитуд всех компонент (∑Ai) пропорционально содержанию определяемого парамагнитного металла в анализируемом растворе. Амплитуда A1 находится по результатам регистрации сигнала ЯМР и последующей его обработки на ЭВМ по специально составленной программе в соответствии с методикой, описанной в Clarke A. H., LillfordP. J. // J. Magn. Reson. 1980. V. 41. 1. Р. 42.
Повышение точности определения объясняется тем, что амплитуда сигнала ЯМР как релаксационный параметр ядер, на которых производится наблюдение ЯМР является более стабильным параметром, чем времена релаксации Т2 и Т1. На соотношение амплитуд не оказывает влияние количество гидратной воды, удерживаемой сорбентом, и температура в пределах от 10 до 50oС.
На фиг. 1 приведена схема подготовки анализируемой пробы раствора парамагнитного металла пропусканием его через патрон с сорбентом; на фиг.2 приведен калибровочный график для определения содержания ионов меди (II) в водных растворах; на фиг. 3 - калибровочный график для определения содержания ионов марганца (II) в водных растворах.
Анализируемый раствор объемом 1 л пропускают через катионит КУ-2•8, взятый в качестве сорбента при температуре от 10 до 50oС в течение нескольких минут. Количество катионита КУ-2•8 определяют из условия максимального заполнения датчика анализатора с учетом уровня насыщения.
Целесообразно сорбент помещать в перфорированный патрон 1, который представляет собой стакан с пористым дном для удерживания гранул сорбента 2 и пропускания раствора из делительной воронки 3. Патрон 1 после стадии сорбции, ставят в стандартную пробирку, габариты которой определены размерами резонансной катушки, датчика анализатора ЯМР. Требования к материалу патрона и пробирки определяются инертностью к сигналу ЯМР (стекло, тефлон и т.д.).
Примеры конкретного выполнения при температуре 23oС.
Пример 1. Определение меди (II) в растворе.
Для построения калибровочного графика готовили 5 стандартных растворов и определяли для них значения соотношения амплитуд (таблица 1). Стандартный раствор объемом 1 л из делительной воронки 3 пропускали через патрон 1 с катионитом КУ-2•8 2 массой 1 г в течение 15 мин (см. фиг.1). Далее патрон ставили в стеклянную пробирку и помещали в датчик анализатора ЯМР для измерения релаксационных характеристик.
По результатам измерения времени спин-спиновой релаксации Т2 определяли релаксационные параметры (T2 и А) протонов воды и осуществляли разделение экспериментальной огибающей сигналов спинового эха на экспоненциальные компоненты (T2i и Ai). В результате для всех стандартных образцов находили соотношение амплитуды первой компоненты к сумме амплитуд всех компонент в процентах (таблица 1) и строили калибровочный график (см. фиг.2). При этом были получены довольно высокие значения коэффициента корреляции R2.
В исследуемом растворе с концентрацией ионов меди 2,17 г-ион/л по калибровочному графику определяли содержание меди (II) (таблица 2). Относительная случайная погрешность анализа при доверительной вероятности р=0,95 и выполнении определений n=4 составила 2,34%.
Пример 2. Определение марганца (II) в растворе.
Определение марганца (II) осуществляли аналогично примеру 1 по калибровочному графику (см. фиг.3). Концентрации стандартных растворов марганца и соответствующие им значения соотношения амплитуд в процентах приведены в таблице 1. Результаты определения содержания марганца (II) в исследуемом растворе приведены в таблице 2. Относительная случайная погрешность анализа при доверительной вероятности p=0,95 и выполнении определений п=4 составила 1,51%.
Использование предлагаемого технического решения повышает точность результатов анализа, расширяет температурный диапазон, в котором возможно производить определение содержания парамагнитных металлов с заданной точностью, уменьшает влияние внешних факторов на результат анализа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭКСПРЕСС-АНАЛИЗА МАЛЫХ КОНЦЕНТРАЦИЙ ВЕЩЕСТВ | 1992 |
|
RU2022259C1 |
Способ идентификации моторных топлив и масел | 2019 |
|
RU2727884C2 |
Способ одновременного определения количества воды и группового состава водонефтяных эмульсий с помощью ЯМР релаксометрии | 2024 |
|
RU2822865C1 |
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ КОМПОНЕНТОВ И ОТДЕЛЬНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ИХ СМЕСЯХ | 2009 |
|
RU2411508C1 |
СПОСОБ ГЕОХИМИЧЕСКОЙ РАЗВЕДКИ ДЛЯ ГЕОЭКОЛОГИЧЕСКОГО МОНИТОРИНГА МОРСКИХ НЕФТЕГАЗОНОСНЫХ АКВАТОРИЙ | 2012 |
|
RU2513630C1 |
Способ и устройство для определения скоростей потока (расхода) и концентрации воды в водо-нефтяных смесях | 2023 |
|
RU2813962C1 |
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ КАЧЕСТВА НЕФТИ И НЕФТЕПРОДУКТОВ | 2012 |
|
RU2519496C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ТЯЖЕЛОЙ НЕФТИ МЕТОДОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА В ПОРОВОМ ПРОСТРАНСТВЕ КОЛЛЕКТОРА И СВОБОДНОМ ОБЪЁМЕ | 2018 |
|
RU2704671C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИСЛОТНОГО ЧИСЛА РАСТИТЕЛЬНЫХ МАСЕЛ | 2000 |
|
RU2187796C2 |
Способ определения морозостойкости растительных образцов | 1990 |
|
SU1738150A1 |
Изобретение относится к радиоспектроскопии ядерного магнитного резонанса (ЯМР) и может быть использовано в аналитической химии. Пропускают анализируемый раствор через сорбент, который затем располагают в датчик релаксометра для последующей регистрации сигнала ЯМР с поверхности сорбента. Экспериментальную огибающую сигналов спинового эха протонов разделяют на экспоненциальные компоненты, в качестве аналитического параметра используют отношение значения амплитуды сигнала ЯМР-релаксации первой компоненты к сумме амплитуд всех компонент и по величине отношения определяют концентрацию анализируемых парамагнитных металлов в растворе. Техническим результатом изобретения является повышение точности способа за счет уменьшения влияния внешних факторов. 3 ил., 2 табл.
Способ определения парамагнитных металлов в растворе методом ЯМР-релаксации, включающий пропускание анализируемого раствора через сорбент, помещенный в перфорированный патрон, который затем располагают в датчик релаксометра для последующей регистрации сигнала ЯМР с поверхности сорбента, отличающийся тем, что экспериментальную огибающую сигналов спинового эха протонов разделяют на экспоненциальные компоненты, в качестве аналитического параметра используют отношение значения амплитуды сигнала ЯМР-релаксации первой компоненты к сумме амплитуд всех компонент и по величине отношения определяют концентрацию анализируемых парамагнитных металлов в растворе.
СПОСОБ ЭКСПРЕСС-АНАЛИЗА МАЛЫХ КОНЦЕНТРАЦИЙ ВЕЩЕСТВ | 1992 |
|
RU2022259C1 |
СПОСОБ ОБРАБОТКИ ИНФОРМАЦИИ, ПРИСПОСОБЛЕНИЕ И УСТРОЙСТВО СВЯЗИ | 2018 |
|
RU2769096C2 |
Цифровое устройство для измерения скорости вращения | 1972 |
|
SU496501A1 |
Авторы
Даты
2002-09-20—Публикация
2000-07-03—Подача