Изобретение относится к медицине, а именно к лечению онкозаболеваний.
Известно, что опухолевые клетки несут на своей поверхности иммуногенные детерминанты. Сам факт иммуногенности опухоли подразумевает возможность использования иммунотерапии в лечении онкологических заболеваний. Важное значение также имеет то, что опухоли разного гистологического типа могут экспрессировать одинаковые опухолеассоциированные антигены (ОАГ). Такое антигенное сходство, по-видимому, свидетельствуют о значительном сходстве внутриклеточных механизмов, лежащих в основе малигнизации разных типов клеток. Важно заметить, что ОАГ в большинстве своем являются филогенетически древними. Отсюда имеет место высокая степень гомологии между ОАГ человека и животных.
Наличие ОАГ, само по себе, в большинстве случаев, однако, недостаточно для развития устойчивого эффективного противоопухолевого иммунитета. Согласно имеющимся данным [3, 9] низкая иммуногенность опухоли может обусловливаться:
1) отсутствием мембранной экспрессии продуктов главного комплекса гистосовместимости (ГКТ), способных комплексироваться с ОАГ;
2) отсутствием мембранной экспрессии костимуляторных молекул (LFA3, CD40, CD54, CD80/86), необходимых для полномасштабной активации Т-лимфоцитов, распознающих ОАГ в комплексе с продуктами ГКТ. В отсутствие взаимодействия костимуляторных молекул со своими лигандами (CD2, CD40L, ICAM, CD28) антигенная стимуляция приводит к анергии или делеции ОаАГ-специфичных Т-лимфоцитов;
3) дефицитом в опухолевом микроокружении иммуностимулирующих цитокинов (прежде всего интерферона (ИФ)-гамма и интерлейкина(ИЛ)-2), и
4) продукцией клетками опухоли иммуносупрессорных цитокинов, таких, например, как трансформирующий ростовой фактор (ТРФ)-бета и ИЛ-10.
Цель иммунотерапии - преодолеть барьеры, стоящие на пути развития эффективного противоопухолевого иммунного процесса и увеличить количество в организме сенсибилизированных Т-лимфоцитов, способных реагировать на ОАГ по вторичному типу, что, в свою очередь, создает предпосылки для полномасштабной Т-клеточной активации относительно низкоиммуногенными интактными опухолевыми клетками [2, 3, 7].
Согласно имеющимся данным вакцинация опухолеассоциированными пептидами в принципе может приводить к формированию устойчивого противоопухолевого иммунитета [7]. Презентация пептидов Т-лимфоцитам в этом случае осуществляется дендритическими клетками и макрофагами, имеющими полный набор средств для запуска Т-клеточной активации. Важно, однако, заметить, что развитие иммунного ответа на одну или несколько опухолеассоциированных детерминант зачастую не приводит к замедлению развития опухолевого процесса, а лишь дает селективные преимущества для роста тем опухолевым клеткам, которые не экспрессируют эти детерминанты [7]. Иммунизация организма опухолевыми клетками в этом отношении выглядит более предпочтительной, так как позволяет индуцировать иммунные реакции на широкий спектр ОАГ. Увеличения иммуногенности аутологичных опухолевых клеток можно достичь следующим образом:
1) генетически модифицировать их таким образом, чтобы заставить одновременно экспрессировать на своей поверхности ОАГ, комплексированные с продуктами ГКГ, и костимуляторные молекулы, способные взаимодействовать с соответствующими экспрессированными на Т-лимфоцитах лигандами [9].
2) вставить в них функционально активные гены, колерующие иммуностимуляторные цитокины (ИЛ-2, ИФ-гамма, ИЛ-4, ИЛ-6, ИЛ-12) [18].
Указанные подходы, однако, трудно реализуемы в клинической практике, поскольку возможности модификации аутологичных опухолевых клеток имеют не только технические, но и временные ограничения. Поэтому было обращено внимание на возможность использования в иммунотерапии чужеродных аллогенных опухолевых клеток. Эффективность такого подхода была доказана экспериментально. Предполагается, что аллоантигены в этом случае обеспечивают дополнительный стимул для развития противоопухолевых иммунных реакций [15]. В настоящее время в ряде клиник начата клиническая апробация (I и II фаза клинических испытаний) этого подхода [2, 5]. Следует, однако, заметить, что использование аллогенных клеток в качестве индукторов противоопухолевого иммунитета также имеет ряд ограничений. Во-первых, поскольку распознавание ОАГ рестриктировано продуктами ГКГ, необходимо, чтобы используемые для иммунизации аллогенные клетки имели общие с опухоленосителем антигены ГКГ. Во-вторых, как уже было замечено, опухолевые клетки, как правило, не несут на своей поверхности костимуляторные молекулы, а значит сами по себе не могут обеспечить эффективную активацию интактных опухолеспецифичных Т-лимфоцитов.
Целью заявляемого изобретения является стимуляция противоопухолевых иммунных реакций, приводящих к формированию эффективного долговременного противоопухолевого иммунитета. Это достигается вакцинацией опухоленосителя (человека) ксеногенными (например, мышиными) опухолевыми клетками. Человек и мышь являются по отношению друг к другу дискордантными видами. Это означает, что в сыворотке крови человека в обязательном порядке присутствуют естественные антитела, способные вызвать острое отторжение трансплантированных мышиных клеток. Большая часть этих антител (составляющая примерно 1% сывороточных иммуноглобулинов) распознают на ксеногенных клетках альфа-галактозильный эпитоп (клетки человека не экспрессируют этот эпитоп из-за отсутствия в них фермента - альфа-1,3-галактозилтрансферазы). На основе имеющихся данных [1, 6, 11] можно полагать, что попадание ксеногенных опухолевых клеток в организм человека включает работу следующего иммунного механизма.
1. Сывороточные антигалактозильные антитела и комплемент покрывают поверхность ксеногенных опухолевых клеток и индуцируют процесс их разрушения.
2. Через взаимодействия с Fc-рецепторами и рецепторами к компонентам комплемента антигенный материал попадает в макрофаги и дендритические клетки.
3. Макрофаги и дендритические клетки презентируют антигенные детерминанты в комплексе с продуктами ГКГ II и I класса Т-хелперам (CD4+) и предшественникам цитолитических Т-лимфоцитов (CD8+) соответственно. Взаимодействие экспрессирующихся на антиген-презентирующих клетках костимуляторных молекул с соответствующими Т-клеточными мембранными лигандами, а также продуцируемые этими клетками иммуностимуляторные цитокины (ИЛ-12, фактор некроза опухоли (ФНО)-альфа, ИЛ-4 и др.) осуществляют эффективную костимуляцию антигенспецифических CD4+ Т-лимфоцитов.
4. Т-хелперы, активированные ОАГ и ксеноантигенами, посредством продукции цитокинов (ИФ-гамма, ИЛ-2 и ИЛ-15 и др.) стимулируют функциональную активность клеток, обладающих неспецифической противоопухолевой активностью (макрофаги, костномозговые цитостатические эффекторы, естественные цитотоксические и киллерные клетки). Активация этих клеток приводит к торможению опухолевого роста и ассоциируется с усилением экспрессии на клетках опухоли продуктов ГКГ.
5. Опухолеспецифические CD8+ цитолитические Т-лимфоциты, а также их предшественники распознают экспрессированные на поверхности опухолевых клеток комплексы, состоящие из ОАГ и продуктов ГКГ I класса, и после контактной и цитокиновой костимуляции со стороны активированных Т-хелперов и профессиональных антиген-презентирующих клеток вступают в фазу активного роста.
6. Высокая активность Т-клеточных цитолитических клонов, направленная против широкого спектра ОЛГ, приводит к лиминации опухоли из организма.
Предложенный подход к лечению онкозаболеваний не имеет ранее упомянутых ограничений. В основе его эффективности лежит вовлечение большого количества аутологичных профессиональных антиген-презентирующих клеток в процесс индукции противоопухолевых иммунных реакций.
Преимущества ксеновакцинотерапии перед методами лечения, основанными на использовании аутологичных или аллогенных клеточных вакцин, заключается в следующем:
1) она не требует использования бактериальных или цитокиновых адъювантов;
2) вовлекает в формирование противоопухолевых клеточных реакций естественный (пресуществующий иммунитет); и
3) решает проблему эффективной (иммуногенной) презентации ОАГ Т-лимфоцитам.
В качестве индукторов (стимуляторов) противоопухолевого иммунитета были использованы клетки мышиных перевиваемых опухолевых линий. Конкретный выбор клеток для иммунизации осуществлялся на основе данных о происхождении опухоли и о реактивности (ареактивности) лимфоцитов пациента по отношению к тем или иным ОАГ (определяется по кожной реакции гиперчувствительности замедленного типа). Клеточная вакцина формируется из клеточных линий, экспрессирующих широкий спектр ОАГ. В ее состав в обязательном порядке включалась линия, которая, помимо ОАГ, экспрессирует структуры, обладающие выраженным иммуноадъювантным действием. Одна вакцинирующая доза включала в себя 5•107 инактивированных облучением или разрушенных клеток, первый индуцирующий курс включал в себя 4 внутрикожные/подкожные иммунизации с интервалом в 14 дней, второй консолидирующий курс 4 иммунизации с интервалом в 30 дней и третий поддерживающий курс вакцинации с интервалом в 30 или 90 дней.
В рамках проводимого в Институте клинической иммунологии СО РАМП клинического испытания ксеновакцинотерапии (протокол 6 от 6 октября 1998 г.) было пролечено 29 онкопациентов с III (10) и IV (19) стадией заболевания (меланома - 13, колоректальный рак - 9, рак пищевода - 1; рак молочной железы - 1, рак тела матки - 1; рак легкого - 2, рак яичника - 1; рак слюной железы - 1) со сроком наблюдения от 6 до 15 месяцев. Анализ результативности лечения проводили с использованием общепринятых критериев ВОЗ. Пациенты обследовались раз в 4 месяца. Согласно полученным на текущий момент предварительным данным клинический эффект (полная ремиссия, частичная ремиссия, стабилизация болезни) получен у 23 пациентов (80%). У подавляющего большинства отвечающих на вакцинотерапию пациентов отмечено усиление клеточной реактивности на ОАГ (кожная проба, реакция бласттрансформации лимфоцитов in vitro). Никаких заслуживающих внимания побочных эффектов ксеновакцинотерапии зарегистрировано не было.
Примеры:
1) Больной Б. 64 г. Был оперирован по поводу меланомы (область правого плеча) в 1996 г. Рецидив заболевания с развитием метастатических поражений лимфоузлов правой подмышечной впадины отмечен в июне 1997 г. Проведена метастазэктомия. В течение 1997-1998 г. проводились курсы полихимиотерапии. С августа 1998 г. по декабрь 1999 г. проводилась вакцинотерапия, которая включала в себя 19 вакцинаций, сделанных по вышеуказанной схеме. По состоянию на декабрь 1999 г. констатируется полная ремиссия, субъективный статус пациента - 0.
2) Больная Н. 51 год. В апреле 1998 г. поставлен DS: меланома в области правового бедра. Произведено иссечение первичного очага 23 апреля 1998 г. (IV степень инвазии по Кларку). В мае 1998 г проведен курс полихимиотерапии. В декабре 1998 г. при рентгенографическом обследовании обнаружены метастатические очаги в костной ткани. В марте 1999 г. при сцинтиграфическом обследовании выявлено метастатическое поражение L2 с вовлечением всего тела и боковых отростков и переходом на L3, поражение (3 см) в области правого подвздошно-крестцового сочленения. В это же время был начат курс полихимиотерапии, приведший к резкому ухудшению самочувствия больной и ее отказу от дальнейшего химиотерапевтического лечения. С апреля по декабрь 1999 г. проводится вакцинотерапия, включившая в себя 11 иммунизаций, выполненных по вышеуказанной схеме. По состоянию на декабрь 1999 констатируется стойкая стабилизация болезни, субъективный статус пациентки по критериям ВОЗ 0.
3) Больная В. 64 г. В 1993 г. оперирована по поводу аденокарциномы прямой кишки: эктирпация прямой кишки с наложением anus praeter neturalis (T3N0M0). В 1997 г. развился рецидив болезни По этому поводу проведена двухэтапная лучевая терапия. Летом 1998 г. отмечена прогрессия заболевания с прорастанием опухоли во влагалище. С сентября 1998 г по декабрь 1999 г. проводится вакцинотерапия (17 вакцинаций). По состоянию на декабрь 1999 г. инструментальных данных за прогрессию заболевания нет. По результатам осмотра онкогинеколога констатирована частичная регрессия опухоли (появился доступ к матке, ранее отсутствующий в результате массивного опухолевого пророста). Субъективный статус - 0.
Таким образом, полученные на сегодняшний день данные указывают на перспективность разработанного нового подхода к лечению онкозаболеваний.
Литература
1. Селедцов В. И. //Цитостатическая активность клеток костного мозга и клеточные механизмы ее регуляции: дис.... докт. мед. наук. - Новосибирск, ИКИ СО РАМН - 1998. - 175 с.
2. Arienti F. , Sule-Suso J., Belli F. et al.// Human Gene Therapy. - 1996. - Vol.7. - P.1955-1963.
3. Chen L. //Immunol. Today. - 1998. - Vol.19. - P.27-30.
4. Disis M.L., Cheever M.A.// Current Opinion in Immunology. - 1996. - Vol.8. - 637-642.
5. Fenton R. Т. , Sznol M., Luster D.G. et al.// Human Gene Therapy - 1995. - Vol.6. - P.87-106.
6. Galili U., LaTemple C.// Immunol. Today. - 1997. - Vol.18. - P.138-146.
7. Knuth A., Jager E. // Symposium in Immunology YI, Springer - Verlag, Heidelberg. - 1997. - P.125-135.
8. Melief C.J.M., Offringa R., Toes R.E.M., Kast W.M.// Current Opinion in Immunology. - 1996. - Vol.8 - 651-657.
9. Meuer S., Rudy W., Habicht A. et al. // Symposium in Immunology YI, Springer-Verlag, Heidelberg. - 1997. - P.77-88.
10. Miles D.// Cancer Treatment Reviews. - 1997. - Vol.23.
11. Mosman T.R., Sad S. // Immunol. Today. - 1996. - Vol.17 - P.138-146.
12. Plautz G. E. , Yang Z-Y., Wu B-Y. et al. // Proc. Natl. Acad. Sci. USA. - 1993. - Vol.90. - P.4645-4649.
13. Rosenberg S.A. // Immunol. Today - 1997. - Vol.18. - P.175-182.
14. Seliger B., Huber C. // Symposium in Immunology YI, Springer-Verlag, Heidelberg. - 1997. - P.23-35.
15. Srivastava P.K.// Symposium in Immunology YI, Springer-Verlag, Heidelberg. - 1997. - P.159-168.
16. Van den Eynde В.J., Gaugler В., Brandle D. et al. // Symposium in Immunology YI. Springer-Verlag, Heidelberg. - 1997. - P.1-11.
17 Yee C., Riddell S.R., Greenberg Ph.D.// Current Opinion in Immmunology. - 1997. - Vol.9. - 702-708.
18. Zier К. , Gansbacher В., Salvadory S. // Immunol. Today - 1996. - Vol.17. - P.39-45.
название | год | авторы | номер документа |
---|---|---|---|
ВАКЦИНА ДЛЯ СТИМУЛЯЦИИ ПРОТИВООПУХОЛЕВОГО ИММУНИТЕТА | 2000 |
|
RU2192884C2 |
СПОСОБ ИММУНОТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ГОЛОВНОГО МОЗГА | 2004 |
|
RU2262941C2 |
СПОСОБ КОМБИНИРОВАННОЙ ИММУНОТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ГОЛОВНОГО МОЗГА | 2000 |
|
RU2197985C2 |
ЛИНИЯ КЛЕТОК МЕЛАНОМЫ ЧЕЛОВЕКА ILG, СЕКРЕТИРУЮЩИХ РЕКОМБИНАНТНЫЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР | 2008 |
|
RU2395574C1 |
ЛИНИЯ КЛЕТОК МЕЛАНОМЫ ЧЕЛОВЕКА 26G, СЕКРЕТИРУЮЩИХ РЕКОМБИНАНТНЫЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР | 2008 |
|
RU2395571C1 |
ЛИНИЯ КЛЕТОК МЕЛАНОМЫ ЧЕЛОВЕКА 31G, СЕКРЕТИРУЮЩИХ РЕКОМБИНАНТНЫЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР | 2008 |
|
RU2395573C1 |
ЛИНИЯ КЛЕТОК МЕЛАНОМЫ ЧЕЛОВЕКА PG, СЕКРЕТИРУЮЩИХ РЕКОМБИНАНТНЫЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР | 2008 |
|
RU2395570C1 |
ЛИНИЯ КЛЕТОК МЕЛАНОМЫ ЧЕЛОВЕКА IG, СЕКРЕТИРУЮЩИХ РЕКОМБИНАНТНЫЙ ГРАНУЛОЦИТАРНО-МАКРОФАГАЛЬНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР | 2008 |
|
RU2395572C1 |
СПОСОБ ОЦЕНКИ ПРОЛИФЕРАТИВНОЙ АКТИВНОСТИ В-ЛИМФОЦИТОВ IN VITRO С ИСПОЛЬЗОВАНИЕМ БИОФЛАВОНОИДА ИЗ КОРНЯ ШИПОВНИКА | 1992 |
|
RU2088932C1 |
ЦИТОСТАТИЧЕСКИЙ ФАКТОР ПРИРОДНОГО ПРОИСХОЖДЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2002 |
|
RU2233663C2 |
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для вакцинотерапии опухолей. Предложено проводить стимуляцию противоопухолевых иммунных реакций посредством вакцинации человека ксеногенными опухолевыми клетками, полученными от животных (например, мышей), дискордантных по отношению к человеку. Способ позволяет повысить эффективность вакцинотерапии злокачественных опухолей. 1 з.п. ф-лы.
ARIENTI F | |||
et al | |||
Human Gene Therapy | |||
Предохранительное устройство для паровых котлов, работающих на нефти | 1922 |
|
SU1996A1 |
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОБРАЗОВАНИЙ | 1994 |
|
RU2117489C1 |
ШТАММ БАКТЕРИЙ CORYNEBACTERIUM KRESTOVNIKOVA - TROITSKAYA, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПРИГОТОВЛЕНИЯ ИММУНОСТИМУЛЯТОРА | 1993 |
|
RU2027756C1 |
КОСЯКОВ П.Н | |||
и др | |||
Антигены опухолей человека | |||
- М.: Медицина, 1985, с.243-246. |
Авторы
Даты
2002-11-20—Публикация
2000-02-07—Подача