СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОМАРГАНЦЕВЫХ КОНКРЕЦИЙ, СОДЕРЖАЩИХ ФОСФОР Российский патент 2002 года по МПК C22B47/00 C22B5/10 

Описание патента на изобретение RU2193605C1

Изобретение относится к области черной и цветной металлургии, в частности к процессу электропечного восстановления высокофосфористых железомарганцевых конкреций, содержащих цветные металлы, и может быть использовано для извлечения марганца, цветных и сопутствующих благородных металлов.

Известен способ переработки марганецевого сырья с повышенным содержанием фосфора (0,2-0,25%), низким содержанием железа и весьма низким содержанием цветных металлов, в частности обогащенного марганцевого концентрата на передельный марганцевый шлак путем его восстановительной плавки в ферросплавных рудотермических печах с подачей в шихту небольшого количества твердого восстановителя, например, кокса ("Производство низкофосфористых марганцевых ферросплавов", Обзорная информация. Центральный научно-исследовательский институт информации и технико-экономических исследований черной металлургии, выпуск 3, М., 1987 г., с.2-3). Сущность процесса дефосфоризации концентрата состоит в селективном восстановлении углеродом содержащихся в марганцевом концентрате фосфора и железа с переводом их в попутный металл. При этом в металлосодержащий продукт плавки переходит также небольшое количество восстановленного марганца (до 10%).

Перед плавкой исходное марганецсодержащее сырье (руду) с высоким содержанием пустой породы подвергают обогащению (промывка, магнитная сепарация и др.). При этом 20-25% Мn, содержащегося в сырой руде, теряется с промывочными шламами. При необходимости (мелкий гранулометрический состав) обогащенный марганцевый концентрат подвергают окускованию, например, агломерацией.

Полученный металл, как правило, направляют на утилизацию в доменное производство для получения специальных литейных чугунов или в сталеплавильное производство для выплавки автоматных сталей с повышенным содержанием фосфора.

Недостатком указанного способа является его громоздкость (большое количество переделов), а также ограничение допустимого содержания фосфора в перерабатываемом сырье, что не позволяет перерабатывать по этому способу высокофосфористые виды сырья, включающего цветные металлы, в частности железомарганцевые конкреции. Кроме того, совместная загрузка восстановителя в смеси с сырьем приводит к перерасходу восстановителя из-за более длительного времени его пребывания в печи и большей степени "выгорания".

Наиболее близким к заявляемому способу переработки железомарганцевых конкреций техническим решением является принятый за прототип патент США 4162916 "Способ переработки комплексной металлосодержащей руды, например конкреций". По данному способу конкреции, содержащие наряду с ценными металлами (марганец, железо, цветные металлы) и такие примеси, как фосфор, сера и др. , подвергают высокотемпературной обработке посредством сушки при температуре более 500oС (преимущественно 650oС), затем конкреции или полученные из них брикеты загружают с требуемым для отделения меди от марганца количеством углеродсодержащего восстановителя в электропечь. (На 100 кг конкреций добавляют 5 кг кокса). Переработка конкреций возможна также с использованием жидкого восстановителя, например мазута, который вводят на стадии получения брикетов. На первой стадии электроплавки получают два промежуточных продукта: первичный марганецсодержащий шлак, включающий меньшую часть меди, и первичный металлический сплав, содержащий основное количество меди, а также никеля и кобальта. Полученный первичный металлический сплав направляют на переработку с целью извлечения цветных металлов. На следующей стадии процесса первичный марганецсодержащий шлак обезмеживают ферросилицием с получением передельного марганцовистого шлака и вторичного металлического сплава, содержащего кроме Сu и Fe до 15% Мn. Передельный марганцевый шлак перерабатывают с получением товарных марганецсодержащих продуктов, например ферромарганца, а вторичный сплав направляют в голову процесса с использованием имеющегося Fe в качестве восстановителя цветных металлов.

К недостаткам прототипа следует отнести невозможность получения данным способом шлаков, пригодных для производства ферромарганца и других марганецсодержащих продуктов из высокофосфористых конкреций (содержание фосфора более 0,25%) из-за перехода фосфора в передельные марганцовистые шлаки, а также сложность процесса и высокий расход электроэнергии.

Техническим результатом изобретения является повышение соотношения Мn/Р в передельном шлаке до требуемого (не менее 350) для его дальнейшей переработки на товарные марганецсодержащие сплавы, а также упрощение способа и снижение расхода электроэнергии.

Технический результат достигается тем, что переработку железомарганцевых конкреций, содержащих помимо марганца и железа цветные металлы и фосфор, осуществляют следующим образом: железомарганцевые конкреции направляют на операцию высокотемпературной обработки при температуре 800-1000oС, подготовленный материал без подачи восстановителя расплавляют в электропечи, на расплав загружают твердый восстановитель в количестве 2,5-6% в расчете на углерод от массы загруженных конкреций, выдерживают расплав с восстановителем в печи в течение 0,5-3 часов и выпускают полученный передельный шлак, который направляют на переработку для получения товарных марганецсодержащих продуктов, а образующийся металлический сплав выпускают и направляют на утилизацию полезных компонентов.

В частном случае для повышения общего извлечения марганца из железомарганцевых конкреций перед обжигом производят разделение конкреций на фракции +5 мм и -5 мм, фракцию -5 мм отделяют и перерабатывают отдельно, а фракцию +5 мм направляют на электроплавку с загрузкой твердого углеродсодержащего восстановителя на поверхность расплава. Фракция железомарганцевых конкреций -5 мм может быть переработана и по схеме, принятой для фракции +5 мм, а передельные шлаки, полученные от электроплавок обеих фракций переработаны совместно.

Электроплавка подвергнутых высокотемпературной обработке конкреций с загрузкой твердого углеродсодержащего восстановителя на поверхность расплава с последующей выдержкой расплава позволяет за одну стадию обеспечить необходимую степень отделения фосфора от марганца с переводом требуемой части фосфора в металлический сплав и тем самым получить при переработке высокофосфористых железомарганцевых конкреций продукты, пригодные для дальнейшей переработки: металлический сплав, содержащий основное количество цветных металлов, железа и фосфора и передельный марганцовистый шлак, содержащий марганец и железо, при соотношении в нем Мn/Р>350, который может быть использован в производстве ферромарганца.

Электроплавка с подачей твердого восстановителя на поверхность расплава и выдержкой расплава с восстановителем в течение определенного времени приводит к тому, что восстановитель взаимодействует с постоянно обновляющейся поверхностью расплава, находящегося в сильном конвективном движении в области погружения электродов, расположенной до граничной поверхности раздела шлак - металлический сплав. Образующиеся мельчайшие частицы металлического твердого раствора на основе восстановленного железа, являющегося извлекающей фазой для фосфора, и цветных металлов коагулируют между собой, укрупняются и опускаются в донную фазу, образующуюся на подине печи. Тем самым за счет постоянного контактирования верхнего слоя расплава с восстановителем происходит обеднение его по железу, цветным металлам и фосфору, переходящими в сплав, и обогащение его марганцем. Сплав, накапливающийся на подине, содержит, мас. %: Мn~9-11; Сu~0,2; Ni~0,5; Со~0,1; Р~5; Fe~78-83 и может быть утилизирован в доменном производстве. Заявляемое количество углеродсодержащего восстановителя (2,5-6%) является достаточным для развития процесса восстановления количества железа, необходимого для перевода цветных металлов и фосфора в сплав без восстановления марганца, который в основном остается в передельном шлаке при требуемых соотношениях Мn/Р. Количество восстановителя менее 2,5% не обеспечивает необходимой степени восстановления фосфора и цветных металлов. Выдержка расплава с восстановителем в течение 0,5-3 часов позволяет достичь необходимой степени восстановления фосфора и цветных металлов, более длительная выдержка связана с повышением расхода электроэнергии.

Условия подготовки конкреций к электроплавке (обжиг или прокалка при температуре 800-1000oС) позволяет полностью удалить летучие компоненты конкреций и осуществить электроплавку с загрузкой восстановителя на расплав, не допуская "вспенивания" расплава, которое может привести к останове процесса. Температура менее 800oС не позволяет полностью удалить летучие компоненты. Подъем температуры свыше 1000oС нецелесообразен, так как необходимая степень удаления летучих составляющих уже достигнута и дальнейшее повышение температуры приводит только к перегреву конкреций и повышенному расходу электроэнергии.

Предлагаемый способ, по сравнению с прототипом, позволяет за одну стадию электроплавки получить из высокофосфористых конкреций продукты, которые могут быть использованы для получения товарной продукции, содержащей ценные компоненты, при этом упрощается способ переработки и снижается расход электроэнергии за счет исключения второй стадии электроплавки, а также переработки оборотного сплава, полученного на этой стадии.

При разделении исходных железомарганцевых конкреций на фракции +5 мм и -5 мм значительная часть цветных металлов концентрируется в более мелкой фракции, сюда же переходит и значительная часть фосфора, поэтому отделение ее позволит уже в голове процесса дополнительно разделить фосфор и цветные металлы от марганца. Соотношение марганца, фосфора и цветных металлов в выделенной при механическом разделении фракции (+5 мм) таково (табл.1), что при последующей ее электроплавке передельные шлаки практически не содержат цветных металлов и пригодны для переработки на ферромарганец (табл.1). Фракция -5 мм может быть переработана в отдельной ветке, например, по схеме обжиг-восстановительная электроплавка, и при восстановлении этой фракции в печи с учетом применения всей совокупности заявляемых параметров цветные металлы в основном переходят в металлический сплав. Получаемый шлак имеет состав, аналогичный составу пердельного шлака от электроплавки фракции +5 мм, что дает возможность перерабатывать их совместно.

Параметры заявляемого способа переработки железомарганцевых конкреций были установлены в процессе исследований на укрупненно-лабораторной трехэлектродной электропечи. Прокалку железомарганцевых конкреций проводили в укрупненно-лабораторной трубчатой вращающейся барабанной печи.

Осуществление предлагаемого способа проиллюстрировано на представительной партии железомарганцевых конкреций месторождения Балтийского моря. В табл. 1 представлены средние составы железомарганцевых конкреций, в т.ч. исходной пробы (без разделения на фракции), фракции +5 мм и фракции -5 мм.

В качестве восстановителя использовали кокс с содержанием углерода 85 мас.%.

Электропечная установка (ЭПУ) мощностью 225 кВА представляла собой опытную укрупненно-лабораторную трехэлектродную прямоугольную печь с диаметром электродов 125 мм, предназначенную для плавки металлов, руд или концентратов, шлаков и др. материалов. Производительность агрегата по шлаку - 30 т/сут•м2.

Уровень ванны расплава в электропечи составлял 500-550 мм, уровень металла - 100-150 мм.

Перед загрузкой в приемный бункер установки каждую порцию железомарганцевых конкреций предварительно взвешивали и опробовали. Загрузку конкреций в печь производили через прямоугольную щель (загрузочное окно), имеющуюся в своде печи, при помощи вибрационного питателя. Сюда же, после расплавления металла, подавали и кокс. После окончания каждой плавки полученные продукты (шлак и металлический сплав) выпускали в ковш из летки, расположенной вблизи подины. Вначале выпускался металл, затем шлак. Застывшие в ковше продукты плавки после взвешивания подвергались опробованию.

Условия, при которых проводились опытные плавки, приведены в табл.2.

Плавку 1 проводили с предварительно прокаленными при 900oС исходными железомарганцевыми конкрециями; в печь вначале загружали и расплавляли конкреции, затем добавляли на ванну расплава кокс в количестве 4% в расчете на углерод от массы конкреций; расплав выдерживали в печи в течение 1,5 часов.

При проведении плавки 2 железомарганцевые конкреции, предварительно прокаленные при 900oС, загружали в печь совместно с коксом; остальные параметры: количество восстановителя, время выдержки расплава в печи, остались такими же, как и в первой плавке.

Во всех последующих плавках 3-18 кокс также подавали на расплав. Во всех плавках выборочно изменяли только один параметр процесса, в т. ч. температуру прокалки или количество подаваемого на расплав восстановителя в расчете на углерод от загруженной в печь массы конкреций, или время выдержки расплава с восстановителем в печи. При этом все остальные параметры выдерживали одинаковыми, заявленными в середине диапазона.

Плавки 3-8 были проведены с целью определения необходимой для процесса температуры прокалки железомарганцевых конкреций, при этом в плавке 3 использовали непрокаленные конкреции, а в плавках 4-8 изменяли температуру прокалки в диапазоне 750-1050oС.

В плавках 9-13 изменяли количество подаваемого на расплав восстановителя от 2 до 6,5 мас.% в расчете на углерод от загруженной в печь массы конкреций.

В плавках 14-18 изменяли время выдержки расплава с восстановителем в печи от 20 минут до 3 часов 15 минут.

В табл. 3 приведены полученные результаты опытных плавок железомарганцевых конкреций.

При плавке 1 получено соотношение Мn/Р в передельном шлаке - 350 и сравнительно невысокий удельный расход электроэнергии - 3250 кВт•ч на 1 тонну марганца в шлаке.

Как следует из приведенных в табл.2 и 3 данных, во всех случаях, когда поддерживались заявляемые параметры процесса (плавки 1, 5-7, 10-12 и 15-17) достигалось требуемое соотношение Мn/Р более 350. При этом во всех указанных плавках удельный расход электроэнергии на 1 тонну марганца в передельном шлаке был невысоким.

В плавке 2 получено более низкое соотношение Мn/Р в передельном шлаке при более низких, в соответствии с загружаемым сырьем, содержаниях цветных металлов в металлическом сплаве.

Плавки 3-8 показали что, установленный диапазон температуры прокалки 800-1000oС имеет весьма важное значение для надежного обеспечения нормальных условий расплавления загружаемых конкреций при наборе ванны расплава, полностью исключающих "вспенивание" расплава при практическом осуществлении процесса. При плавке 3 во время набора ванны имело место небольшое "вспенивание" расплава. Гораздо меньшее "вспенивание" наблюдалось также и при плавке 4. С повышением температуры прокалки конкреций до 800oС (плавка 5) указанное явление полностью исчезает.

При отклонении от заявленного диапазона температуры прокалки (800-1000oС) в сторону снижения температуры в плавке 4 (температура прокалки 750oС) и при применении непрокаленных конкреций (плавка 3) при высоких соотношениях Мn/Р в передельном шлаке наблюдалось повышение удельного расхода электроэнергии на тонну марганца в шлаке. Указанное связано с низкой температурой прокалки конкреций (плавка 4), в связи с чем потребовался дополнительный расход электроэнергии на удаление остатков летучих и с необходимостью энергетических затрат на полное удаление летучих веществ (плавка 3). С повышением температуры прокалки свыше 1000oС в плавке 8 (1050oС) при полученном высоком соотношением Мп/Р в передельном шлаке удельный расход электроэнергии на тонну марганца не превысил аналогичных показателей предыдущих плавок. Однако применение указанной температуры прокалки является нецелесообразным из-за необоснованного перегрева конкреций при прокалке после практически полного удаления летучих веществ.

При отклонении от заявляемых пределов количества подаваемого на расплав кокса в расчете на углерод от загруженной массы конкреций в сторону его уменьшения до 2 мас.% в плавке 9 наблюдалось снижение соотношения Мn/Р<350 в передельном шлаке. Вместе с тем из-за недостатка кокса получены также сравнительно низкие содержания и извлечения цветных металлов и фосфора в металлический сплав. При увеличении количества загружаемого на расплав кокса до 6,5 мас. % в плавке 13 соотношение Мn/Р в передельном шлаке является достаточно высоким, а удельный расход электроэнергии на тонну марганца в шлаке - низким. Однако при таком количестве кокса увеличиваются потери восстановленного марганца с металлическим сплавом, что является неприемлемым.

При отклонении от заявляемых пределов времени выдержки расплава железомарганцевых конкреций с коксом в сторону его сокращения до 20 минут в плавке 14 удельный расход электроэнергии на тонну марганца в передельном шлаке снизился. Тем не менее использование указанного времени выдержки расплава с коксом оказалось явно не достаточно для вывода фосфора в металлический сплав и несколько возросли содержания цветных металлов в шлаке. С увеличением продолжительности выдержки расплава конкреций с коксом до 3 часов 15 минут в плавке 18 привело к перерасходу электроэнергии и снижению производительности печи, хотя соотношение Мn/Р было вполне приемлемым.

Похожие патенты RU2193605C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОФОСФОРИСТЫХ ЖЕЛЕЗОМАРГАНЦЕВЫХ РУД 2001
  • Свенцицкий А.Т.
  • Носенков А.Н.
  • Трунев С.В.
  • Ермолов В.М.
  • Рогов В.С.
RU2197551C1
Способ выплавки передельного марганцевого шлака 1989
  • Ермолов Виктор Михайлович
  • Миракова Марина Георгиевна
SU1744137A1
СПОСОБ СОВМЕСТНОЙ ПЕРЕРАБОТКИ ОКИСЛЕННЫХ И КАРБОНАТНЫХ ЖЕЛЕЗОМАРГАНЦЕВЫХ РУД 2008
  • Ермолов Виктор Михайлович
  • Серегин Александр Николаевич
  • Шахпазов Евгений Христофорович
  • Кравченко Галина Павловна
  • Гусев Валентин Иванович
  • Хроленко Виктор Яковлевич
  • Сысолятин Александр Леонидович
  • Петров Юрий Леонидович
RU2374350C1
ШИХТА ДЛЯ ВЫПЛАВКИ УГЛЕРОДИСТОГО ФЕРРОМАРГАНЦА 2002
  • Носенков А.Н.
  • Трунев С.В.
  • Ермолов В.М.
  • Рогов В.С.
RU2212465C1
СПОСОБ ПЕРЕРАБОТКИ БЕДНЫХ ЖЕЛЕЗОМАРГАНЦЕВЫХ РУД И КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ СПЛАВА УГЛЕВОССТАНОВИТЕЛЬНЫМ ПРОЦЕССОМ 2008
  • Ишметьев Евгений Николаевич
  • Щетинин Анатолий Петрович
  • Салихов Зуфар Гарифуллович
  • Ермолов Виктор Михайлович
RU2382089C1
ШИХТА ДЛЯ ВЫПЛАВКИ ПЕРЕДЕЛЬНОГО МАРГАНЦЕВОГО ШЛАКА 2002
  • Носенков А.Н.
  • Трунев С.В.
  • Ермолов В.М.
  • Рогов В.С.
RU2225456C2
ДУПЛЕКС-ПЕЧЬ ДЛЯ ВЫПЛАВКИ МАРГАНЦЕВЫХ СПЛАВОВ ИЗ ЖЕЛЕЗОМАРГАНЦЕВЫХ БЕДНЫХ РУД И КОНЦЕНТРАТОВ И ТЕХНОГЕННЫХ ОТХОДОВ МЕТАЛЛУРГИИ 2008
  • Салихов Зуфар Гарифуллович
  • Ишметьев Евгений Николаевич
  • Щетинин Анатолий Петрович
RU2380633C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ КОНЦЕНТРАТОВ 2004
  • Князев М.В.
  • Рябко А.Г.
  • Цемехман Л.Ш.
  • Иванов В.А.
  • Козырев В.Ф.
RU2255996C1
Способ выплавки среднеуглеродистого ферромарганца 2018
  • Дашевский Вениамин Яковлевич
  • Леонтьев Леопольд Игоревич
  • Жучков Владимир Иванович
  • Полулях Лариса Алексеевна
  • Александров Александр Александрович
  • Травянов Андрей Яковлевич
  • Макеев Дмитрий Борисович
  • Торохов Геннадий Валерьевич
  • Петелин Александр Львович
RU2710706C1
СПОСОБ ПЕРЕРАБОТКИ БЕДНЫХ МАРГАНЕЦСОДЕРЖАЩИХ РУД 2000
  • Чистов Л.Б.
  • Хвостов В.П.
  • Малов Е.И.
  • Охрименко В.Е.
  • Свенцицкий А.Т.
RU2175022C1

Иллюстрации к изобретению RU 2 193 605 C1

Реферат патента 2002 года СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОМАРГАНЦЕВЫХ КОНКРЕЦИЙ, СОДЕРЖАЩИХ ФОСФОР

Изобретение относится к области черной и цветной металлургии, в частности к электропечному восстановлению высокофосфористых железомарганцевых конкреций, содержащих цветные металлы. Изобретение включает высокотемпературную обработку железомарганцевых конкреций при температуре 800-1000oС и восстановительную электроплавку, причем восстановитель подают на поверхность расплава в определенном количестве и выдерживают в таком состоянии в течение заданного времени. Передельный шлак электроплавки поступает на извлечение марганца, а сплав - на утилизацию ценных компонентов. Предусмотрено также разделение железомарганцевых конкреций на фракции +5 и -5 мм с их раздельной переработкой. Способ позволяет переработать конкреции с высоким содержанием фосфора при снижении затрат электроэнергии и упрощении технологии переработки. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 193 605 C1

1. Способ переработки железомарганцевых конкреций, содержащих фосфор, включающий высокотемпературную обработку конкреций при температуре более 800oС, восстановительную электроплавку конкреций с твердым углеродсодержащим восстановителем на марганцовистый шлак и металлический сплав, переработку шлака на товарный марганецсодержащий продукт и сплава с утилизацией ценных компонентов, отличающийся тем, что конкреции после высокотемпературной обработки путем обжига и/или прокаливания при температуре 800-1000oС подвергают восстановительной электроплавке с подачей твердого углеродсодержащего восстановителя на поверхность расплава в количестве 2,5-6% в расчете на углерод от массы загруженных конкреций, проводят выдержку расплава с восстановителем в печи в течение 0,5-3 ч, а полученный шлак направляют на получение марганецсодержащих продуктов. 2. Способ по п. 1, отличающийся тем, что из железомарганцевых конкреций перед обжигом отделяют фракцию -5 мм и перерабатывают ее отдельно. 3. Способ по п. 2, отличающийся тем, что фракцию -5 мм перерабатывают отдельно по схеме обжиг и/или прокалка при температуре 800-1000oС, восстановительная электроплавка с загрузкой твердого углеродсодержащего восстановителя, подаваемого в количестве 2,5-6% на поверхность расплава, и выдержкой расплава в течение 0,5-3 ч, а полученный марганцовистый шлак перерабатывают на товарный продукт совместно со шлаком, полученным при электроплавке фракции +5 мм.

Документы, цитированные в отчете о поиске Патент 2002 года RU2193605C1

US 4162916 А, 31.07.1979
Реферативный журнал Металлургия
М., ВИНИТИ, 1980, реферат 2Г215П
US 4029498 А, 14.06.1977
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1

RU 2 193 605 C1

Авторы

Русаков М.Р.

Глазатов А.Н.

Рябко А.Г.

Ковалев О.В.

Парамонов Н.П.

Серебряков Л.Г.

Сидельников С.М.

Даты

2002-11-27Публикация

2001-05-07Подача