Способ выплавки среднеуглеродистого ферромарганца Российский патент 2020 года по МПК C22C33/04 C21C7/64 

Описание патента на изобретение RU2710706C1

Изобретение относится к черной металлургии, а именно к способам производства марганцевых ферросплавов, и может быть использовано для выплавки рафинированных марганцевых ферросплавов - средне- и низкоуглеродистого ферромарганца.

Известен способ выплавки средне- и низкоуглеродистого ферромарганца путем восстановления оксидов марганца кремнием ферросиликомарганца (Гасик М.И. Марганец. М: Металлургия. 1992. 608 с). Технология выплавки среднеуглеродистого и низкоуглеродистого ферромарганца во всех случаях одна и та же. Содержание углерода в выплавляемом металле зависит, главным образом, от содержания углерода в ферросиликомарганце.

Марганцевые руды многих месторождений характеризуются сравнительно низким содержанием марганца (20-25%) и повышенным содержанием фосфора до 0,20-0,25% и более (Р/Мn≥0,008) (месторождения марганцевых руд России, Украины, Грузии, Болгарии и др.). В случае выплавки рафинированных марганцевых ферросплавов из марганцевых руд и концентратов этих месторождений невозможно в одну стадию получить металл со стандартным содержанием фосфора ≤0,35%. Поэтому для получения стандартных сплавов процесс выплавки ведут в две стадии.

При выплавке средне- и низкоуглеродистого ферромарганца в этом случае на первой стадии селективно восстанавливают фосфор с переводом его в попутный металл. Для этого марганцевые руду или концентраты подвергают пирометаллургической дефосфорации (Гасик М.И. Марганец. М.: Металлургия. 1992. 608 с.). Марганецсодержащие продукты в смеси с ограниченным количеством восстановителя (кокса), из расчета восстановления фосфора, плавят в электропечи. Однако, несмотря на ограниченное количество углерода в шихте, частично восстанавливается и марганец, хотя он обладает сродством к кислороду, чем фосфор, что видно из приведенных ниже реакций (Куликов И.С. Раскисление металлов. М.: Металлургия. 1975. 504 с.):

.

Продуктами процесса пирометаллургической дефосфорации являются передельный малофосфористый марганцевый шлак (40-45% Мn; 0,02-0,05% Р; 28-30% SiO2; 4-8% СаО; 1-3% Al2O3; 2-4% MgO) и попутный отвальный металл - высокофосфористый углеродистый ферромарганец (45-55% Мn; 30-45% Fe; 1,5-3% Р; 0,1-0,3% Si; 3,5-5% С).

С попутным металлом теряется до 15-20% марганца, содержащегося в шихте. Расход электроэнергии на выплавку 1 т передельного марганцевого шлака составляет 850-1000 кВч. Исходные марганецсодержащие продукты обычно содержат до 10-15% SiO2, однако малофосфористый марганцевый шлак содержит до 30-35% SiO2 за счет добавок в шихту кварцита с целью снижения восстановления марганца путем связывания оксида марганца в силикат марганца. Однако полезное извлечение марганца не превышает 80-85%. (Гасик М.И. Марганец. М.: Металлургия. 1992. 608 с. )

Передельный малофосфористый марганцевый шлак, полученный на первой стадии, разливают, как правило, на разливочной машине. Затем на второй стадии твердый передельный шлак загружают в другую электропечь, в которой расплавляют шлак и проводят процесс восстановления марганца из его оксида, содержащегося в передельном шлаке, кремнием ферросиликомарганца с получением среднеуглеродистого или низкоуглеродистого ферромарганца. Третьим компонентом шихты является известь, поскольку процесс выплавки средне- и низкоуглеродистого ферромарганца ведут на шлаках основностью (CaO/SiO2)=1,3-1,4. Расход электроэнергии на выплавку 1 т среднеуглеродистого или низкоуглеродистого ферромарганца (на второй стадии) составляет 1450-1550 кВ⋅ч. Расход передельного малофосфористого марганцевого шлака на выплавку 1 т среднеуглеродистого или низкоуглеродистого ферромарганца составляет 1500-1550 кг. Суммарный расход электроэнергии на выплавку 1 т среднеуглеродистого или низкоуглеродистого ферромарганца при двухстадийном процессе составляет 2600-2800 кВ⋅ч.

Недостатками описанного способа выплавки средне- и низкоуглеродистого ферромарганца являются потери марганца с попутным металлом, образующимся на первой стадии, и значительный суммарный расход электроэнергии на выплавку сплавов.

В качестве прототипа выбран способ дефосфорации марганцевых руд и концентратов (Патент РФ 2594997. Способ дефосфорации марганцевых руд и концентратов / Дашевский В.Я., Юсфин Ю.С., Полулях Л.А., Петелин А.Л., Макеев Д.Б., Александров А.А., Леонтьев Л.И., Губанов В.И., Подгородецкий Г.С. Бюл. 2016. №23). Недостатком способа-прототипа является тот факт, что он не рассматривает процесс выплавки средне- и низкоуглеродистого ферромарганца.

Техническим результатом, достигаемым в изобретении, является выплавка среднеуглеродистого или низкоуглеродистого ферромарганца в одну стадию без потерь марганца с попутным металлом и сокращение расхода электроэнергии на выплавку сплавов.

Предлагаемый способ выплавки средне- и низкоуглеродистого ферромарганца отличается от известного тем, что, с целью дефосфорации расплава марганецсодержащих продуктов и устранения потерь марганца с попутным металлом, фосфор восстанавливают из оксидного расплава не твердым углеродом, а газообразным монооксидом углерода (СО), который продувают через марганецсодержащий оксидный расплав.

Марганцевые руды или концентраты расплавляют в электропечи. При взаимодействии расплава марганцевых руд и концентратов с газообразным монооксидом углерода протекает реакция восстановления фосфора (Куликов И.С. Раскисление металлов. М.: Металлургия. 1975. 504 с.):

Восстановленный газообразный фосфор удаляется с отходящими газами. Для предотвращения попадания газообразного фосфора в атмосферу, отходящие газы пропускают через водяной затвор, в котором конденсируется и оседает фосфор. Содержание фосфора в оксидном марганецсодержащем расплаве снижается до 0,01-0,02%.

Протекание реакции взаимодействия моноокида углерода с оксидом марганца (Куликов И.С. Раскисление металлов. М.: Металлургия. 1975. 504 с.):

в температурном интервале проведения металлургических процессов (1000-2000оС) термодинамически невозможно (энергия Гиббса реакции >0), поэтому марганец, содержащийся в исходных концентратах, полностью останется в оксидном расплаве. Следовательно, не будет потерь марганца с попутным отвальным металлом. Отпадет также необходимость добавлять в шихту кварцит, снижая тем самым содержание марганца в оксидном расплаве. В результате снижаются расход извести и кратность шлака при выплавке средне- и низкоуглеродистого ферромарганца при той же основности шлака, что также приводит к повышению извлечения марганца в металл.

После снижения содержания фосфора в расплаве до требуемой величины, что определяется анализом проб, в ванну печи загружают ферросиликомарганец и известь и ведут процесс восстановления марганца в той же печи. Поскольку процесс выплавки среднеуглеродистого или низкоуглеродистого ферромарганца ведут в одном плавильном агрегате, а не в двух, как это имеет место в действующем способе, существенно сокращается расход электроэнергии на выплавку сплава. Расход электроэнергии на выплавку 1 т среднеуглеродистого или низкоуглеродистого ферромарганца в этом случае составит 1600-1800 кВ⋅ч.

Газообразный монооксид углерода, потребный для дефосфорации оксидного марганецсодержащего расплава получают в газогенераторе или используют отходящий газ закрытых рудно-термических печей, выплавляющих углеродовосстановительным процессом ферросплавы, например, высокоуглеродистый ферромарганец или ферросиликомарганец. Отходящий газ этих печей содержит до 85% и более монооксида углерода.

Пример. Проведена выплавка среднеуглеродистого ферромарганца по действующему и предлагаемому способам. В экспериментах использовали марганцевый концентрат, содержащий, %: 43,99 Мn; 2,90 Fe; 0,22 Р; 16,21 SiO2; 4,73 СаО; 2,79 Аl2O3; 1,32 MgO. По действующему способу на первой стадии провели процесс пирометаллургической дефосфораци. Для снижения восстановления марганца путем связывания оксида марганца в силикат марганца добавлен кварцит в количестве, обеспечивающем содержание SiO2 в малофосфористом шлаке порядка 30-35%. Были получены малофосфористый передельный шлак, содержащий %: 58,12 МnО (45,02 Мn); 0,22 FeO (0,17 Fe); 0,06 Р2O5 (0,03 Р); 31,01 SiO2; 5,65 СаО; 3,37 Аl2O3; 1,57 MgO, и попутный отвальный металл (высокофосфористый ферромарганец), содержащий %: 56,77 Мn; 35,62 Fe; 2,58 Р; 5,03 С. В попутный металл перешло 10% марганца, 95% железа и 90% фосфора. С отходящими газами улетело 5% марганца и 5% фосфора. В малофосфористом передельном шлаке осталось 85% марганца, 5% железа и 5% фосфора. Расход электроэнергии составил 883 кВт⋅ч/т малофосфористого шлака. Результаты приведены в таблице. Расчет проведен на 1000 кг марганцевого концентрата.

На второй стадии из малофосфористого передельного шлака выплавили среднеуглеродистый ферромарганец. Из малофосфористого передельного шлака в металл перешло 50% марганца, 95% железа, 60% фосфора. Из ферросиликомарганца перешло в металл 100% марганца, 100% железа, 60% фосфора. Ферросиликомарганец содержал, %: 69,42 Мn; 11,25 Fe; 0,35 Р; 16,86 Si; 1,98 С. Получен среднеуглеродистый ферромарганец следующего состава, %: 88,35 Мn; 9,42 Fe; 0,20 Р; 0,41 Si; 1,62 С. Расход электроэнергии составил 1531 кВт⋅ч/т среднеуглеродистого ферромарганца. Суммарный расход электроэнергии на 1 т среднеуглеродистого ферромарганца составил 2629 кВт⋅ч. Результаты приведены в таблице.

По предлагаемому способу выплавили среднеуглеродистый ферромарганец из того же марганцевого концентрата в одну стадию. После расплавления концентрата в печи расплав продували монооксидом углерода (СО). Через 20 мин содержание фосфора в оксидном расплаве составило 0,019%. После чего в печь загрузили требуемое количество ферросиликомарганца и извести. Из марганцевого концентрата в металл перешло 53% марганца, 95% железа, 60% фосфора. Более высокое извлечение марганца в металл в предлагаемом способе по сравнению с действующим связано с меньшей кратностью шлака из-за более низкого содержания SiO2 в марганцевом концентрате по сравнению с передельным малофосфористым марганцевым шлаком. Из ферросиликомарганца перешло в металл 100% марганца, 100% железа, 60% фосфора. Ферросиликомарганец содержал, %: 69,42 Мn; 11,25 Fe; 0,35 Р; 16,86 Si; 1,98 С. Получен среднеуглеродистый ферромарганец следующего состава, %: 87,19 Мn; 10,15 Fe; 0,19 Р; 0,42 Si; 1,65 С. Расход электроэнергии составил 1683 кВт⋅ч/т среднеуглеродистого ферромарганца. Результаты приведены в таблице.

Как видно из приведенных в таблице данных, использование предлагаемого способа выплавки среднеуглеродистого ферромарганца позволило повысить сквозное извлечение марганца на 10,5% и сократить суммарный расход электроэнергии на выплавку 1 т среднеуглеродистого ферромарганца на 35%.

Технико-экономические преимущества предлагаемого способа выплавки средне- и низкоуглеродистого ферромарганца заключается в том, что его использование позволит при выплавке средне- и низкоуглеродистого ферромарганца с требуемым низким содержанием фосфора повысить сквозное извлечение марганца и значительно снизить расход электроэнергии на выплавку сплавов.

Похожие патенты RU2710706C1

название год авторы номер документа
Способ выплавки передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца 2018
  • Дашевский Вениамин Яковлевич
  • Леонтьев Леопольд Игоревич
  • Жучков Владимир Иванович
  • Полулях Лариса Алексеевна
  • Александров Александр Александрович
  • Травянов Андрей Яковлевич
  • Макеев Дмитрий Борисович
  • Торохов Геннадий Валерьевич
  • Петелин Александр Львович
RU2711994C1
СПОСОБ ДЕФОСФОРАЦИИ МАРГАНЦЕВЫХ РУД И КОНЦЕНТРАТОВ 2015
  • Дашевский Вениамин Яковлевич
  • Юсфин Юлиан Семенович
  • Полулях Лариса Алексеевна
  • Петелин Александр Львович
  • Макеев Дмитрий Борисович
  • Александров Александр Александрович
  • Леонтьев Леопольд Игоревич
  • Губанов Валентин Игнатьевич
  • Подгородецкий Геннадий Станиславович
RU2594997C1
Способ переработки марганецсодержащего сырья 2018
  • Дашевский Вениамин Яковлевич
  • Леонтьев Леопольд Игоревич
  • Жучков Владимир Иванович
  • Полулях Лариса Алексеевна
  • Александров Александр Александрович
  • Травянов Андрей Яковлевич
  • Макеев Дмитрий Борисович
  • Торохов Геннадий Валерьевич
  • Петелин Александр Львович
RU2697681C1
СПОСОБ СОВМЕСТНОЙ ПЕРЕРАБОТКИ ОКИСЛЕННЫХ И КАРБОНАТНЫХ ЖЕЛЕЗОМАРГАНЦЕВЫХ РУД 2008
  • Ермолов Виктор Михайлович
  • Серегин Александр Николаевич
  • Шахпазов Евгений Христофорович
  • Кравченко Галина Павловна
  • Гусев Валентин Иванович
  • Хроленко Виктор Яковлевич
  • Сысолятин Александр Леонидович
  • Петров Юрий Леонидович
RU2374350C1
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОМАРГАНЦЕВОГО СЫРЬЯ 2001
  • Вегман Е.Ф.
  • Лазуткин С.Е.
  • Бобкова О.С.
  • Подолина Н.А.
  • Усачев А.Б.
  • Лазуткин С.С.
RU2191831C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ МАРГАНЦЕВЫХ ФЕРРОСПЛАВОВ 2022
  • Константин Сергеевич
  • Кашлев Иван Миронович
RU2788459C1
СПОСОБ ПОЛУЧЕНИЯ СРЕДНЕУГЛЕРОДИСТОГО ФЕРРОМАРГАНЦА 2010
  • Дашевский Вениамин Яковлевич
  • Юсфин Юлиан Семенович
  • Киреев Сергей Владимирович
  • Губанов Валентин Игнатьевич
  • Александров Александр Александрович
  • Шалыгин Андрей Геннадьевич
  • Подгородецкий Геннадий Станиславович
RU2428499C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАРГАНЦА 1999
  • Дигонский С.В.
  • Дубинин Н.А.
  • Тен В.В.
RU2148102C1
СПОСОБ ПЕРЕРАБОТКИ БЕДНЫХ ЖЕЛЕЗОМАРГАНЦЕВЫХ РУД И КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ СПЛАВА УГЛЕВОССТАНОВИТЕЛЬНЫМ ПРОЦЕССОМ 2008
  • Ишметьев Евгений Николаевич
  • Щетинин Анатолий Петрович
  • Салихов Зуфар Гарифуллович
  • Ермолов Виктор Михайлович
RU2382089C1
СПОСОБ ВЫПЛАВКИ НИЗКОУГЛЕРОДИСТЫХ МАРГАНЕЦСОДЕРЖАЩИХ СПЛАВОВ 2010
  • Серегин Александр Николаевич
  • Ермолов Виктор Михайлович
  • Коноплёв Роман Александрович
RU2455379C1

Реферат патента 2020 года Способ выплавки среднеуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке среднеуглеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата и дефосфорацию марганецсодержащего оксидного расплава путем продувки расплава газообразным монооксидом углерода, при этом через 20 минут продувки после снижения содержания фосфора в расплаве до 0,01-0,02% в ванну печи загружают известь и ферросиликомарганец в количестве, необходимом для восстановления марганца из оксидного расплава. Изобретение осуществляют в одном плавильном агрегате, при этом существенно сокращается расход электроэнергии на выплавку сплавов и повышается полезное извлечение марганца. 1 табл.

Формула изобретения RU 2 710 706 C1

Способ выплавки среднеуглеродистого ферромарганца из марганцевого концентрата в одну стадию в электропечи, характеризующийся тем, что осуществляют расплавление марганцевого концентрата и дефосфорацию марганецсодержащего оксидного расплава путем продувки расплава газообразным монооксидом углерода, при этом через 20 минут продувки после снижения содержания фосфора в расплаве до 0,01-0,02% в ванну печи загружают известь и ферросиликомарганец в количестве, необходимом для восстановления марганца из оксидного расплава.

Документы, цитированные в отчете о поиске Патент 2020 года RU2710706C1

ЛЯКИШЕВ Н.П
и др
Металлургия ферросплавов
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Металлургия сплавов кремния, марганца и хрома
Учебное пособие
М., Издательство "Учёба", 2006, с.80-82
СПОСОБ ДЕФОСФОРАЦИИ МАРГАНЦЕВЫХ РУД И КОНЦЕНТРАТОВ 2015
  • Дашевский Вениамин Яковлевич
  • Юсфин Юлиан Семенович
  • Полулях Лариса Алексеевна
  • Петелин Александр Львович
  • Макеев Дмитрий Борисович
  • Александров Александр Александрович
  • Леонтьев Леопольд Игоревич
  • Губанов Валентин Игнатьевич
  • Подгородецкий Геннадий Станиславович
RU2594997C1
US 4346661 A, 31.08.1982
US 4252560 A1, 24.02.1981.

RU 2 710 706 C1

Авторы

Дашевский Вениамин Яковлевич

Леонтьев Леопольд Игоревич

Жучков Владимир Иванович

Полулях Лариса Алексеевна

Александров Александр Александрович

Травянов Андрей Яковлевич

Макеев Дмитрий Борисович

Торохов Геннадий Валерьевич

Петелин Александр Львович

Даты

2020-01-09Публикация

2018-10-10Подача