СПОСОБ ПОЛУЧЕНИЯ ПЕНТАХЛОРИДА НИОБИЯ Российский патент 2002 года по МПК C01G33/00 

Описание патента на изобретение RU2194670C1

Изобретение относится к области получения пентахлорида ниобия из ниобийсодержащего сырья.

Высший хлорид ниобия NbCl5 служит исходным соединением для получения металла, оксидов и других соединений.

Пентахлорид ниобия может быть получен хлорированием металла, ферросплавов ниобия, а также танталит-колумбитового сырья.

Для хлорирования металла (брак штабиков, отходы механической обработки, отюракованные детали, порошки металла) используют хлор. Процесс ведут при 500oС. Лучшие результаты получают при хлорировании в расплаве NaCl+NaFeCl4.

Недостатком способа является получение оксихлорида ниобия NbOCl3, что требует последующей очистки пентахлорида или дохлорирования (см. Зеликман А. Н. и др. Ниобий и тантал. М.: Металлургия, 1990, с. 100-101).

Одним из перспективных источников ниобия является феррониобий.

Феррониобий представляет собой интерметаллическое соединение ниобия и железа Nb(Ta)[Fe(Mn)]2.

Он обычно содержит 40-64% Nb, 0,4-10% Та, 20-30% Fe, а также примеси вольфрама, титана, марганца, алюминия и др.

Феррониобий хрупок и может быть раздроблен в дробилках и шаровых мельницах до кусков нужного размера.

При хлорировании феррониобия в насыпном слое при 700-750oС поверхность частиц сплава блокируется полученным жидким хлоридом железа FеСl3.

Для исключения этого, предложено хлорировать феррониобий в расплаве хлоридов NaCl+NaFeCl4 при 600oС.

Однако этот способ требует сложного аппаратурного оформления. В конденсируемом пентахлориде ниобия содержится значительное количество железа и других примесей, которое зависит от состава солевого раствора и его температуры (см. Зеликман А. Н. и др. Ниобий и тантал. М.: Металлургия, 1990, с. 101 и патент US 3085855, кл. 23-87, 1963).

Наиболее близким к предложенному является способ получения пентахлорида ниобия, который включает взаимодействие оксидной ниобиевой руды с частицами углерода в присутствии алюминия при температуре 1600oС. Образовавшийся карбид ниобия хлорируют при 350-600oС (см. GB 869128, кл. С 01 В, 1961).

Недостатком способа является необходимость введения алюминия, связывающего кислород, высокие температуры процесса, которые требуют сложной аппаратуры, недостаточно высокий выход продукта - 87,5%.

Задачей изобретения является создание такого способа получения пентахлорида ниобия, техническим результатом которого было бы получение чистого пентахлорида ниобия, повышение выхода в конечный продукт и упрощение процесса.

Для этого в способе получения пентахлорида ниобия путем взаимодействия исходного материала с углеродсодержащим соединением и последующего хлорирования полученного карбидного или карбонитридного соединения ниобия, в качестве исходного материала используют феррониобий, в качестве углеродсодержащего соединения используют карбид кальция или цианамид кальция и взаимодействие ведут при температуре 1000-1500oС.

Предпочтительно взаимодействие феррониобия с карбидом или цианамидом кальция проводят в среде азота.

Процесс взаимодействия можно осуществлять в присутствии добавок - соединений щелочных или щелочноземельных металлов или меди в количестве ≤ 1 мас.%.

После хлорирования желательно осуществить разделение и очистку пентахлоридов ниобия и тантала известными способами.

При осуществлении взаимодействия феррониобия с карбидом или цианамидом кальция при температурах 1000-1500oС образуются карбидные или карбонитридные соединения ниобия.

В этих условиях железо, содержащееся в феррониобий, а также примеси марганца, алюминия, олова и др. не образуют карбидов. В результате обработки монофазное интерметаллическое соединение - феррониобий образует две различные фазы: карбидное или карбонитридное соединение ниобия и железо. Следовательно, железо легко отделяется от ниобия, не мешая его дальнейшему хлорированию.

При снижении температуры ниже 1000oС не происходит полной карбидизации, а повышение температуры свыше 1500oС приводит к образованию карбидных соединений железа, которые затрудняют хлорирование и загрязняют образующийся пентахлорид ниобия.

Проведение взаимодействия в среде азота позволяет полностью исключить возможность образования оксидных соединений ниобия и других компонентов, содержащихся в исходном феррониобии.

Для снижения температуры взаимодействия феррониобия с карбидом или цианамидом кальция, а также ускорения процесса можно использовать добавки - соединения щелочных или щелочноземельных металлов или меди, такие как хлориды натрия, калия, кальция, магния, меди. Количество добавок не превышает 1 мас.% от массы шихты.

Учитывая, что феррониобий может содержать значительные количества тантала (до 10%), после хлорирования полученного карбидного соединения ниобия проводят разделение и очистку пентахлоридов ниобия и тантала, выделяя чистые продукты.

Разделение и очистка могут быть осуществлены любым известным способом: дистилляцией, ректификацией и т.д.

Способ иллюстрируется следующими примерами.

Пример 1
В камерную печь с силитовыми нагревателями поместили графитовый патрон, в который засыпали 20 кг шихты, состоящей из предварительно раздробленной до крупности 1-5 мм смеси феррониобия и карбида кальция, взятых в соотношении 4:1.

В пространство печи до начала нагрева подавали азот.

Нагрев производился со скоростью 8-10o в мин. Температура 1500oС была достигнута за 3 ч. Смесь выдерживали при этой температуре в течение 1 ч. Затем питание печи отключили и остудили печь вместе со смесью до 200oС.

Термообработанный материал измельчили до крупности 1 мм и обработали концентрированной соляной кислотой.

Рентгенофазовый анализ показал остаточное содержание примесей, мас.%: Fe-1,5; Mn-0,4; Ti-1,7; W-0,6; Zr-1,2; Са-0,8. Чистота полученного карбида ниобия 93,8%, что значительно выше, чем в известном способе.

Этот материал хлорировали с получением пентахлоридов тантала и ниобия.

Полученные пентахлориды тантала и ниобия очищали и разделяли ректификацией известным способом.

Вначале были отделены все примеси, которые сконцентрировались в кубовом остатке.

Затем ректификацией получили чистый пентахлорид ниобия и концентрат пентахлорида тантала. В заключение проводили ректификацию танталовой фракции с получением чистого пентахлорида тантала.

Чистота пентахлорида ниобия, полученного по заявленному способу составляет не менее 99,99%.

Пример 2
В камерную печь с силитовыми нагревателями поместили графитовый патрон, в который засыпали 25 кг шихты, состоящей из предварительно раздробленной до крупности 1-5 мм смеси феррониобия и цианамида кальция, взятых в соотношении 3:1 и добавки к ним солей щелочных металлов или щелочноземельных металлов. В качестве добавки использовали хлорид натрия в количестве 1 мас.% от массы шихты.

Нагрев производился со скоростью 8-10o в мин. Температура 1000oС была достигнута за 3 ч. Смесь выдерживали при этой температуре в течение 1 ч. Затем питание печи отключили и остудили печь вместе со смесью до 200oС.

Термообработанный материал измельчили до крупности 1 мм и обработали концентрированной соляной кислотой.

Рентгенофазовый анализ показал остаточное содержание примесей, мас.%: Fe-1,3; Mn-0,35; Ti-1,5; W-0,5; Zr-1,1; Са-0,8, чистота полученного карбонитрида ниобия 94,45%.

Этот материал хлорировали с получением пентахлоридов тантала и ниобия.

При использовании в качестве добавок хлоридов калия, кальция, магния или меди результаты процесса не изменялись.

Дальнейшую очистку и разделение хлоридов ниобия и тантала вели как в примере 1.

Чистота полученного пентахлорида ниобия 99,99%.

Вышеприведенные примеры показывают, что предложенный способ значительно проще известного и позволяет получать чистый хлорид ниобия.

Похожие патенты RU2194670C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАХЛОРИДОВ НИОБИЯ И/ИЛИ ТАНТАЛА (ВАРИАНТЫ) 2004
  • Нисельсон Л.А.
  • Гасанов Ахмедали Амиралы Оглы
  • Щербинина Г.Ю.
  • Чувилина Е.Л.
RU2253620C1
СПОСОБ ХЛОРИРОВАНИЯ ФЕРРОНИОБИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Фомин А.В.
  • Добрынин А.И.
  • Детков П.Г.
  • Дробот Д.В.
RU2184790C1
СПОСОБ ХЛОРИРОВАНИЯ ПОЛИМЕТАЛЛИЧЕСКОГО НИОБИЙ-ТАНТАЛСОДЕРЖАЩЕГО СЫРЬЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Дробот Дмитрий Васильевич
  • Детков Павел Генрихович
  • Цурика Андрей Анатольевич
  • Чуб Александр Васильевич
RU2331680C2
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАХЛОРИДОВ РЕДКИХ МЕТАЛЛОВ С ИСПОЛЬЗОВАНИЕМ СЕРЫ 2019
  • Семенов Александр Александрович
  • Цурика Андрей Анатольевич
  • Ухов Станислав Анатольевич
  • Лизунов Алексей Владимирович
RU2797475C2
СПОСОБ ПЕРЕРАБОТКИ ЛОПАРИТОВОГО КОНЦЕНТРАТА 2013
  • Николаев Андрей Анатольевич
  • Николаев Анатолий Владимирович
  • Кирпичев Дмитрий Евгеньевич
RU2513327C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ КАРБИДОВ МЕТАЛЛОВ 1972
  • Ф. Функе, А. И. Тютюнников, В. В. Косухин, Н. С. Ямсков
  • А. А. Клементьев
SU344033A1
Способ получения пятиокиси тантала 1980
  • Антипов Иван Васильевич
  • Титов Андрей Андреевич
  • Огурцов Сергей Владимирович
  • Третьяков Дмитрий Семенович
  • Тюрин Виктор Иванович
  • Гофман Людмила Михайловна
  • Леонов Александр Михайлович
  • Макаревич Владимир Петрович
  • Трофимов Анатолий Николаевич
  • Мальцев Николай Александрович
  • Мельников Леонид Васильевич
SU973482A1
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ СЕРЫ ПО ПРОЦЕССУ КЛАУСА И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 1995
  • Егиазаров Юрий Григорьевич[By]
  • Петкевич Тамара Семеновна[By]
  • Цыбулевский Альберт Михайлович[By]
  • Шеремет Вячеслав Васильевич[By]
  • Грунвальд Владимир Робертович[By]
  • Радченко Михаил Николаевич[By]
  • Алексеева Любовь Александровна[By]
  • Мурин Владимир Иосифович[By]
  • Щелконогов Анатолий Афанасьевич[By]
  • Жуланов Николай Константинович[By]
  • Чуб Александр Васильевич[By]
  • Аврамов Владимир Викторович[By]
RU2076776C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО КАРБИДА ТАНТАЛА ТЕРМОТРАНСФОРМАЦИЕЙ ПЕНТАКИС-(ДИМЕТИЛАМИНО)ТАНТАЛА 2013
  • Стороженко Павел Аркадьевич
  • Шатунов Валерий Владимирович
  • Щербакова Галина Игоревна
  • Блохина Мария Христофоровна
  • Варфоломеев Максим Сергеевич
  • Сидоров Денис Викторович
RU2559284C2
ВЫСОКОПРОЧНАЯ МАЛОМАГНИТНАЯ НЕСТАБИЛИЗИРОВАННАЯ СВАРИВАЕМАЯ СТАЛЬ, УСТОЙЧИВАЯ К ЛОКАЛЬНЫМ ВИДАМ КОРРОЗИИ В ЗОНАХ ТЕРМИЧЕСКОГО ВЛИЯНИЯ СВАРКИ И ДЛИТЕЛЬНОГО НАГРЕВА В ОБЛАСТИ ОПАСНЫХ ТЕМПЕРАТУР 2021
  • Писаревский Лев Александрович
RU2782832C1

Реферат патента 2002 года СПОСОБ ПОЛУЧЕНИЯ ПЕНТАХЛОРИДА НИОБИЯ

Изобретение относится к области получения пентахлорида ниобия из ниобийсодержащего сырья. Результат способа - получение чистого пентахлорида ниобия, повышение выхода в конечный продукт и упрощение процесса. В качестве исходных материалов используют феррониобий и карбид или цианамид кальция. Проводят взаимодействие исходных материалов при температуре 1000-1500oС. Предпочтительно взаимодействие феррониобия с карбидом или цианамидом кальция проводят в среде азота. Процесс взаимодействия можно осуществлять в присутствии добавок - соединений щелочных или щелочноземельных металлов или меди в количестве ≤1 мас.%. После хлорирования желательно осуществить разделение и очистку пентахлоридов ниобия и тантала известными способами. 3 з.п.ф-лы.

Формула изобретения RU 2 194 670 C1

1. Способ получения пентахлорида ниобия, включающий взаимодействие исходного материала с углеродсодержащим соединением и последующее хлорирование полученного карбидного соединения ниобия, отличающийся тем, что в качестве исходного материала используют феррониобий, а в качестве углеродсодержащего соединения используют карбид кальция или цианамид кальция и взаимодействие ведут при температуре 1000-1500oС. 2. Способ по п. 1, отличающийся тем, что взаимодействие феррониобия с карбидом кальция или цианамидом кальция проводят в среде азота. 3. Способ по п. 1 или 2, отличающийся тем, что взаимодействие феррониобия с карбидом кальция или цианамидом кальция ведут в присутствии добавок - соединений щелочных или щелочноземельных металлов или меди в количестве ≤1 мас. %. 4. Способ по любому из предыдущих пунктов, отличающийся тем, что после хлорирования проводят разделение и очистку пентахлоридов ниобия и тантала.

Документы, цитированные в отчете о поиске Патент 2002 года RU2194670C1

GB 869128 А, 31.05.1961
СОСТАВ ДЛЯ СИНТЕЗА КАРБИДОВ ТУГОПЛАВКИХ МЕТАЛЛОВ 1994
  • Илющенко Н.Г.
  • Анфиногенов А.И.
  • Чебыкин В.В.
  • Чернов Я.Б.
  • Ряпосов Ю.А.
  • Добрынин А.И.
  • Горшков А.В.
  • Чуб А.В.
RU2043967C1
US 3203763 А, 31.08.1965
US 3085855 A, 16.04.1963
ЗЕЛИКМАН А.Н
и др
Ниобий и тантал
- М.: Металлургия, 1990, с.101.

RU 2 194 670 C1

Авторы

Нисельсон Л.А.

Елютин А.В.

Фрадков М.Я.

Гасанов Ахмедали Амиралы Оглы

Даты

2002-12-20Публикация

2001-12-26Подача