СПОСОБ ИЗГОТОВЛЕНИЯ ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ СЕЛЕНА-75 Российский патент 2003 года по МПК G21G4/04 

Описание патента на изобретение RU2196364C2

Изобретение относится к ядерной технике и преимущественно к области изготовления источников гамма-излучения, используемых в различных областях промышленности, например, в гамма-дефектоскопии.

Селен-75 образуется по реакции 74Se (n) 75Se при облучении 74Se в атомном реакторе. Он является уникальным излучателем "мягкого" гамма-излучения [Ез= 0,26; 0,28, 0,40 МэB]. Источники ионизирующего излучения, изготовленные на его основе, наиболее пригодны для использования в переносных дефектоскопах РИД-ИС/120/Р при дефектоскопии изделий толщиной до 30 мм в полевых условиях.

Известен способ изготовления источников α,γ-излучений, в которых облучают металлические кобальт, иридий, тулий, золото, предварительно загерметизированные в капсулу из алюминия или кварцевого стекла, с последующим удалением его из капсулы, в которой проводили облучение, а извлеченный из нее радиоактивный металл (материал сердечника) расфасовывают в специально изготовленные чистые капсулы и герметизируют для предотвращения попадания материала сердечника в окружающую среду (Обзор В.П. Сытина, Ф.П. Теплова, А.И. Меловатской "Современное состояние методов получения и конструирования радиоизотопных источников ионизирующих излучений" ч.II, ГОНГИ 1974).

Однако этот прием оказывается непригодным при изготовлении источников селена-75, так как в описанных способах капсулу, в которой проводили облучение, обычно удаляют. В связи с низкой температурой плавления селена (tпл≈220oС), высокой летучестью и сложностью обработки открытых препаратов селена, облучение его в реакторе можно проводить лишь в герметичном устройстве, которое в дальнейшем должно быть первой ампулой источника.

Наиболее близким по сущности к предлагаемому способу является "Способ производства источника гамма-излучений для дефектоскопа" патент 2054718, 1996 г. , в котором описана технология получения металлического селена-74 и последующего изготовления первой ампулы с селеном-74, включающий операции запрессовки селена до плотности не менее 3 г/см3 в капсулу из титана, герметизации ее лазерной сваркой, облучением в реакторе и герметизации во второй капсуле из нержавеющей стали.

При реализации предлагаемого способа были выявлены следующие недостатки.

В процессе облучения ампулы с селеном происходит ее разогрев до температуры 400oС. При этой температуре селен взаимодействует с титаном ампулы с образованием сквозных свищей.

Плотное заполнение ампулы селеном приводило к тому, что в процессе облучения, за счет внутреннего давления паров селена, который плавится при 220oC, происходила деформация капсулы из титана.

При облучении селена-74 по реакции 74Se(n) 75Se образуется сепен-75 (T1/2= 119,8; Eγ=0,265÷0,4 МэВ). Одновременно в процессе облучения в ампуле из титана по реакции 46Ti(n,р)46Sc накапливается скандий-46 (T1/2=83,8 суток Еγ= 0,9-1,1 МэВ). При этом гамма-активность скандия-46 оказывается соизмеримой с активностью селена-75 (T1/2=l19,8 суток; Еγ=0,265÷О,4МэВ).

Это обстоятельство отрицательно влияет на разрешающую способность дефектоскопии и делает небезопасным использование таких источников в переносных дефектоскопах, защита которых рассчитана на торможение гамма-излучения с энергией ≤0,4 МэВ.

Вышеуказанные недостатки устранены в способе изготовления источников гамма-излучения с высокой удельной активностью и не искаженным за счет гамма-излучения материала капсулы спектром гамма-излучения селена-75.

Для этого прессуют таблетку селена-74 до плотности не менее 80% от теоретической, помещают ее в ампулу, внутренний объем которой рассчитывают так, чтобы при минимальных размерах ампулы обеспечить свободный объем, который позволит компенсировать без деформации избыточное давление, создающееся внутри герметичной ампулы при облучении, облучают в реакторе в режиме, обеспечивающем достижение удельной активности селена-75 не менее 1000 Ки/г, и герметизируют во второй ампуле, причем в качестве материала первой ампулы используют металлы, у которых при облучении в реакторе образуются лишь изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75, или образуются радиоактивные изотопы с периодом полураспада менее одного часа.

Использование таких металлов позволит получить гамма-спектр источника, имеющего только спектральные линии селена-75, так как все их короткоживущие радиоактивные изотопы распадутся.

Для сравнения гамма-спектральных характеристик были изготовлены два источника селена-75 с внутренними ампулами из ванадия и титана.

Спектр гамма-излучения источника с внутренней ампулой из ванадия по энергиям соответствует спектру чистого селена-75, а в спектре источника с внутренней ампулой из титана присутствует линия скандия-46 с энергией Еγ= 0,9-1,1 МэВ, относительная гамма-активность которой соизмерима с гамма-активностью селена-75.

Похожие патенты RU2196364C2

название год авторы номер документа
Способ получения селенида ванадия для активной части источника гамма-излучения 2019
  • Андреев Олег Иванович
  • Казаков Лев Леонидович
  • Михеев Андрей Станиславович
  • Тарасов Валерий Анатольевич
RU2723292C1
СПОСОБ ПОЛУЧЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ РАДИОНУКЛИДА Se ДЛЯ ГАММА-ДЕФЕКТОСКОПИИ 2010
  • Волчков Юрий Евгеньевич
  • Декопов Андрей Семенович
  • Злобин Николай Николаевич
  • Косицин Евгений Михайлович
  • Кузнецов Леонид Кондратьевич
  • Шимбарев Евгений Васильевич
  • Федотов Владимир Иванович
  • Хорошев Виктор Николаевич
RU2444074C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ 1998
  • Карелин Е.А.
  • Гордеев Я.Н.
  • Андрейчук Н.Н.
  • Карасев В.И.
  • Скорняков С.И.
  • Голосовский Л.С.
RU2152096C1
РАДИОАКТИВНЫЙ МАТЕРИАЛ С ИЗМЕНЕННЫМ ИЗОТОПНЫМ СОСТАВОМ 2012
  • Манро Джон Дж.
  • Шер Кевин Дж.
RU2614529C2
СПОСОБ ПРОИЗВОДСТВА ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ ДЛЯ ДЕФЕКТОСКОПИИ 1993
  • Афанасьев В.Г.
  • Богод В.Б.
  • Жуковский Е.А.
  • Иванов В.Б.
  • Калитеевский А.К.
  • Карелин Е.А.
  • Ковшов А.И.
  • Коробцев В.П.
  • Мариненко Е.П.
  • Петухов В.И.
  • Соснин Л.Ю.
  • Суворов И.А.
  • Топоров Ю.Г.
  • Чельцов А.Н.
  • Чесанов В.В.
  • Штань А.С.
RU2054718C1
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО КАРБИДА БОРА 1999
  • Рисованый В.Д.
  • Захаров А.В.
  • Клочков Е.П.
  • Осипенко А.Г.
RU2156732C1
СПОСОБ ПОЛУЧЕНИЯ СЕРДЕЧНИКА ГАММА-ИСТОЧНИКА НА ОСНОВЕ РАДИОНУКЛИДОВ ЕВРОПИЯ 1991
  • Рисованый В.Д.
  • Клочков Е.П.
  • Пономаренко В.Б.
  • Чернышев В.М.
RU2034347C1
УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО КОНТРОЛЯ 1993
  • Афанасьев В.Г.
  • Богод В.Б.
  • Жуковский Е.А.
  • Иванов В.Б.
  • Калитеевский А.К.
  • Карелин Е.А.
  • Ковшов А.И.
  • Петухов В.И.
  • Соснин Л.Ю.
  • Суворов И.А.
  • Топоров Ю.Г.
  • Чельцов А.Н.
  • Чесанов В.В.
  • Штань А.С.
RU2054658C1
ИСТОЧНИК ГАММА-ИЗЛУЧЕНИЯ С АКТИВНЫМ СЕРДЕЧНИКОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1992
  • Клочков Евгений Петрович[Ru]
  • Пономаренко Виктор Борисович[Ru]
  • Постоваров Игорь Олегович[Ru]
  • Рисованый Владимир Дмитриевич[Ru]
  • Роботько Александр Васильевич[Lt]
  • Ряховских Виктор Иванович[Ru]
  • Троицкий Григорий Владимирович[Ru]
  • Чернышов Владимир Михайлович[Ru]
RU2035076C1
Способ изготовления объемных радионуклидных источников с рабочей торцевой поверхностью 2002
  • Ледовских Н.М.
  • Сироткин А.Ф.
  • Саликов М.М.
RU2223563C2

Реферат патента 2003 года СПОСОБ ИЗГОТОВЛЕНИЯ ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ СЕЛЕНА-75

Изобретение относится к изготовлению источников гамма-излучения и позволяет повысить безопасность при работах с переносными дефектоскопами. Для этого прессуют таблетку селена-74 до плотности не менее 80% от теоретической, помещают ее в ампулу, внутренний объем которой рассчитывают так, чтобы при минимальных размерах ампулы обеспечить свободный объем, который позволит компенсировать без деформации избыточное давление, создающееся внутри герметичной ампулы при облучении, и обеспечить требуемую потребителем источников удельную мощность экспозиционной дозы не менее 5•10-8 А/кг мм3 объема активной части, облучают в реакторе в режиме, обеспечивающем достижение удельной активности селена-75 не менее 1000 Ки/г, и герметизируют во второй ампуле, причем в качестве материала первой ампулы используют металлы, у которых при облучении в реакторе образуются лишь изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75, или образуются радиоактивные изотопы с периодом полураспада менее 1 ч. 1 з.п. ф-лы.

Формула изобретения RU 2 196 364 C2

1. Способ изготовления источников гамма-излучения на основе селена-75 с энергией 0,26-0,4 МэВ, включающий операции прессования, герметизации обогащенного селена-74 в капсулу, облучения полученной ампулы в атомном реакторе и последующей герметизации облученной ампулы с селеном в капсуле из легированной стали, отличающийся тем, что прессуют таблетку селена-74 до плотности не менее 80% от теоретической, помещают ее в ампулу, внутренний объем которой рассчитывают так, чтобы при минимальных размерах ампулы обеспечить свободный объем, который позволит компенсировать без деформации избыточное давление, создающееся внутри герметичной ампулы при облучении, и обеспечить требуемую потребителем гамма-активность источников, облучают в реакторе в режиме, обеспечивающем достижение удельной активности селена-75 не менее 1000 Ки/г, и герметизируют во второй ампуле, причем в качестве материала первой ампулы используют металлы, у которых при облучении в реакторе образуются лишь изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75, или образуются радиоактивные изотопы с периодом полураспада менее 1 ч. 2. Способ по п. 1 отличающийся тем, что в качестве металла первой ампулы используют ванадий.

Документы, цитированные в отчете о поиске Патент 2003 года RU2196364C2

СПОСОБ ПРОИЗВОДСТВА ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ ДЛЯ ДЕФЕКТОСКОПИИ 1993
  • Афанасьев В.Г.
  • Богод В.Б.
  • Жуковский Е.А.
  • Иванов В.Б.
  • Калитеевский А.К.
  • Карелин Е.А.
  • Ковшов А.И.
  • Коробцев В.П.
  • Мариненко Е.П.
  • Петухов В.И.
  • Соснин Л.Ю.
  • Суворов И.А.
  • Топоров Ю.Г.
  • Чельцов А.Н.
  • Чесанов В.В.
  • Штань А.С.
RU2054718C1
УСТРОЙСТВО ДЛЯ РАДИАЦИОННОГО КОНТРОЛЯ 1993
  • Афанасьев В.Г.
  • Богод В.Б.
  • Жуковский Е.А.
  • Иванов В.Б.
  • Калитеевский А.К.
  • Карелин Е.А.
  • Ковшов А.И.
  • Петухов В.И.
  • Соснин Л.Ю.
  • Суворов И.А.
  • Топоров Ю.Г.
  • Чельцов А.Н.
  • Чесанов В.В.
  • Штань А.С.
RU2054658C1
Поддерживающая стойка 1987
  • Савенко Юрий Филипович
  • Каретников Валентин Николаевич
  • Сопилко Степан Степанович
  • Талдыкин Алексей Николаевич
  • Гуляев Олег Кузмич
SU1458583A1
Прижимной валик для вытяжного аппарата прядильных машин 1943
  • Балабан Д.А.
  • Беззаботнов И.И.
  • Гамбург Я.Ю.
  • Гинтофт Е.С.
  • Глухова А.И.
  • Гусева Е.И.
  • Зырин С.Г.
  • Касаткин И.М.
  • Левинский П.Г.
  • Лифшиц Б.Ю.
  • Певзнер А.С.
  • Седов Д.А.
  • Стручков С.Е.
  • Успенский М.Т.
  • Хайтов М.М.
  • Хрущев Г.Г.
  • Шорин Н.С.
  • Шумов Б.А.
SU65608A1
РУМЯНЦЕВ С.В
и др
Справочник по радиационным методам неразрушающего контроля
- М.: Энергоиздат, 1982, с.50.

RU 2 196 364 C2

Авторы

Гордеев Я.Н.

Карасев В.И.

Топоров Ю.Г.

Даты

2003-01-10Публикация

2001-04-04Подача