ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА Российский патент 2003 года по МПК F02K9/18 

Описание патента на изобретение RU2196916C1

Изобретение относится к военной технике, а именно к зарядам твердого топлива для ракетных двигателей, и может быть использовано в ракетах (ракетных снарядах) с твердотопливным двигателем.

Объект изобретения представляет собой заряд твердого ракетного топлива (ТРТ), прочно скрепленного с корпусом двигателя и раскрепленного по торцам с днищами корпуса, имеющий внутреннюю камеру горения, образованную центральным каналом и щелевыми вырезами.

Конструкции зарядов с каналом и щелевыми вырезами (канально-щелевые) широко используются в ракетных двигателях твердого топлива, поскольку обеспечивают за счет варьирования геометрических размеров щелей и их количества требуемые характеристики двигателя (тяга, расход, давление и др.).

Одно из основных направлений по обеспечению совершенства зарядов - размещение в корпусе двигателя большего количества топлива. Это достигается только за счет минимизации объема внутренней камеры горения заряда, т.е. за счет уменьшения диаметра канала, оптимизации формы щелевых вырезов и уменьшения числа этих вырезов.

Недостатком канально-щелевого заряда является неравнопрочность его по длине из-за наличия концентрации деформаций в районе выхода щелей на цилиндрический канал при воздействии эксплуатационных нагрузок, что снижает эксплуатационную надежность двигателя в целом (А.И. Мишичев. "Расчетные модели при определении напряжений и напряжений жестко скрепленных зарядов РДТТ", Москва, 1976).

Кроме того, неравномерная конструкция заряда по длине канала ограничивает возможности по размещению в камере сгорания ракетного двигателя максимального количества топлива, поскольку геометрия внутренней камеры горения заряда всецело определяется размерами участка заряда, на который приходится максимальное напряжение, т.е. участка, содержащего концентратор деформаций.

Величина коэффициента концентрации деформаций зависит от длины и количества щелей, радиуса округления и формы основания щелей.

Основная задача проектировщика - создание равнопрочной конструкции, в которой были бы исключены места концентрации деформаций или концентрация деформаций была бы максимально снижена.

Равнопрочная конструкция заряда по выходным параметрам, в том числе и по объему размещенного в нем топлива, будет определяться как оптимальная, а также характеризоваться как обеспечивающая высокую степень надежности работы ракетного двигателя.

Из известных конструкций зарядов наиболее близок к предлагаемой конструкции по всем ограничительным признакам заряд, представленный в патенте США 4936092, F 02 K 9/28, предлагаемый авторами за прототип.

В конструкции-прототипе, содержащем центральный канал, цилиндрический участок переходит в участок с наличием щелевых вырезов, выходящих на канал.

Недостатком прототипа является необеспеченность равнопрочности щелевого и цилиндрического участков, поскольку:
1. Не определен профиль щели в продольном сечении (т.е. отсутствуют рекомендации по выбору угла наклона основания щели к оси канала).

Определение профиля щели в продольном сечении важно, поскольку от него зависит напряженно-деформированное состояние (НДС) основания щели, при этом точка максимума напряжения находится на основании щели на расстоянии (0-0,4)•Е от цилиндрического канала (здесь Е - свод заряда, см. фиг.1).

2. Не определен профиль щели в поперечном сечении (отсутствуют рекомендации по выбору ширины щели и высоты расширяющегося участка щели).

3. Не учитывается изменение НДС на цилиндрической части канала в зависимости от длины цилиндрического участка заряда (Lцил).

Известно, что при уменьшении длины Lцил деформации на канале уменьшаются и тогда для обеспечения равнопрочности необходимо менять профиль щели.

Задачей предлагаемого технического решения является установление требований к выбору конструкции щелевых вырезов в заряде, обеспечивающих равнопрочность щелевого и цилиндрического участков и исключающих, тем самым, разнородные требования к механической прочности топлива на этих участках, что позволяет:
1. Повысить массу заряда при использовании конкретного твердого топлива (с присущим ему уровнем механических характеристик) за счет выбора конфигурации щелевых вырезов.

2. Понизить требования к прочности твердого ракетного топлива.

3. Повысить надежность работы заряда твердого топлива в составе ракетного двигателя.

Указанный технический результат достигается тем, что профиль щели на участке, прилегающем к каналу, на расстоянии не менее 1/3 высоты щели H от поверхности канала выполняется в поперечном сечении равномерно расширяющимся с максимальным расширением (максимальным радиусом) основания щели при выходе на канал ρ (в дальнейшем - параметр щели ρ), определяемым по формуле
ρ = 2π•Rк/N•exp(1,5•(0,28-Kт)), [1]
где Rк - радиус канала;
N - число щелей;
Кт - коэффициент торцевой разгрузки,
при этом угол наклона основания щели к каналу на этом участке должен находиться в пределах 35°≤ α ≤ 60°, что является оптимальным с точки зрения прочности заряда.

Для достаточно длинных зарядов, характеризующихся отношением Lцил/R3≥8 при коэффициенте торцевой разгрузки Кт=1, величина максимального расширения (максимального радиуса) основания щели при выходе на канал выбирается из условия
ρ = 2,1•Rк/N. [2]
Профиль щели (в поперечном сечении) и угол на остальном участке (т.е. на оставшихся 2/3 высоты щели Н) не является лимитирующим с точки зрения прочности и в этой связи он может быть минимизирован в размерах с целью повышения коэффициента объемного заполнения камеры топливом (например, может быть выбран меньший угол наклона основания щели).

Но при этом радиус в вершине щели r должен выбираться из условия
ρ/r≤3, [3]
иначе в месте сопряжения возникает концентратор деформаций.

Рекомендации по выбору профиля щели даны по результатам исследований НДС в вершине и в основании щели на объемных моделях зарядов поляризационно-оптическим методом.

Сущность изобретения поясняется чертежом, представленным на фиг.1, на котором изображена предлагаемая конструкция заряда ТРТ, и на фиг.2, 3 - варианты использования предлагаемого заряда.

Предлагаемый заряд состоит из корпуса 1, в котором размещено топливо 2, прочно скрепленное с корпусом, имеющее центральный сквозной цилиндрический канал и щелевые вырезы в качестве компенсатора поверхности горения.

На фиг.1 показаны:
Lз - длина заряда;
Lцил - длина цилиндрической части заряда;
Lщ - длина щели;
Н - высота щели;
1/3Н - высота участка с расширением щели;
Rк - радиус канала;
Rз - радиус заряда по топливу;
R - радиус щели в вершине (в поперечном сечении);
ρ - максимальное расширение (максимальный радиус) основания щели при выходе в канал;
α - угол наклона основания щели (фиг.1, 2);
γ - угол наклона участка основания щели (фиг.2);
Е - высота свода заряда;
εθ - окружные деформации;
а - в - вершина щели (фиг.1, 2);
в - с - д - основание щели (фиг.1, 2).

В предлагаемом заряде (в качестве примера) выполнено 6 щелей, и он имеет следующие параметры:
Rк=140 мм, Rз=420 мм, Lз=3000 мм, Lщ=800 мм, Кт=0,8.

Основания щелей расположены под углом α = 45° к оси заряда, в поперечном сечении плоский профиль щели переходит в равномерно расширяющийся к каналу на прилегающем к этому каналу участке, участок расположен на расстоянии не менее 1/3 высоты щели Н от поверхности канала. С учетом принятых параметров, используя выражение [1] и [3], найдены значения
ρ = 67 мм, r = 22,3 мм.

На объемной модели поляризационно-оптическим методом рассчитано НДС заряда с выбранным в данном примере профилем щели.

На фиг. 1 показана эпюра распределения окружных деформаций εθ по длине заряда, из которой видно, что максимальные величины окружных деформаций εθ и в щелевой части заряда, и на цилиндрическом участке канала равны.

Равенство величин деформаций εθ свидетельствует о равнопрочности заряда.

При изменении заданных параметров Lз, Lцил, Rз для обеспечения равнопрочности необходимо выбирать новый профиль щели, изменяя параметр ρ, радиус в вершине щели r или изменяя число щелей N.

На фиг. 2 показан вариант профиля щели, у которого в продольном сечении основание щели выполнено сопряжением двух участков, расположенных:
- под углом α = 35° (участок, прилегающий к каналу, расположенный на расстоянии, равном 1/3 высоты щели Н);
- под углом γ = 10° (участок, расположенный на расстоянии, равном оставшимся 2/3 высоты щели Н).

Профиль щели в поперечном сечении остается неизменным, т.е. таким же, как и в варианте на фиг.1.

На фиг.2 приведена эпюра распределения деформаций εθ для данного варианта щелей.

Как видно из эпюр в обоих вариантах (фиг.1, 2), деформации εθ в основании щелевых вырезов при выходе на канал одинаковы.

На участке, расположенном на расстоянии, равном по высоте оставшимся 2/3 высоты щели Н, деформации не превысили уровень деформаций в основании щели, и к вершине щели уровень деформаций снижается.

В этой связи конструкция, приведенная на фиг.2, является предпочтительной, т.к. для нее коэффициент объемного заполнения камеры топливом выше примерно на 4% в сравнении с конструкций, представленной на фиг.1.

На фиг.3 показан вариант конструкции заряда, у которого щель в основании (при выходе на канал) представляет собой часть овала, образованного сопряжением трех окружностей:
- двух окружностей малого радиуса;
- одной окружности большого радиуса при соотношении радиусов большого и малого, как 5:1.

Для этого случая вычисленный по формуле [1] параметр щели ρ должен быть больше или равен большему радиусу из радиусов, аппроксимирующих овал, а соотношение радиусов большого и малого должно быть равным, как 5:1.

В качестве примера рассчитан вариант заряда (фиг.3) с параметрами: Rк=60 мм, Rз=153 мм, Lз=1207 мм, Lщ=290 мм, К=0,8.

Параметр щели ρ, рассчитанный по формуле [1] и обеспечивающий равнопрочность, равен для данного варианта 25 мм.

Таким образом, при аппроксимации основания щели в виде овала в рассмотренном варианте заряда большой радиус овала принят 25 мм, а малый радиус - 5 мм.

Конструкция (фиг. 3) предпочтительнее конструкции (фиг.1, 2), поскольку позволяет принять ширину щели h меньше, чем h=2ρ, как это имеет место в вариантах (фиг.1, 2) ввиду того, что в них конфигурация основания щели аппроксимирована окружностью.

Обеспечение равнопрочности цилиндрического и щелевого участков канально-щелевого заряда позволяет увеличить массу топлива в габаритах заряда за счет оптимизации конфигурации щелевых вырезов в заряде, более полно использовать прочностные характеристики топлива и повысить тем самым выходные параметры двигателя с сохранением заданной надежности.

Отработка двигателя с предлагаемой конфигурацией заряда подтвердила его высокую надежность в экстремальных по действующим нагрузкам условиях.

Похожие патенты RU2196916C1

название год авторы номер документа
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2003
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Козлов Н.Л.
  • Аликин В.Н.
  • Талалаев А.П.
  • Колесников В.И.
  • Куценко Г.В.
  • Поваров С.А.
  • Хорев Н.А.
  • Цой Э.И.
  • Энкин Э.А.
RU2221158C1
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2006
  • Колесников Виталий Иванович
  • Балабанов Геннадий Константинович
  • Ведерникова Екатерина Гавриловна
  • Пашин Владимир Иванович
  • Пашин Сергей Владимирович
RU2326261C1
РАКЕТНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ 2001
  • Голованов В.П.
  • Гринберг С.И.
  • Кузьмицкий Г.Э.
  • Кусакин Ю.Н.
  • Талалаев А.П.
  • Энкин Э.А.
RU2196915C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2008
  • Шамраев Виктор Яковлевич
  • Самохин Владимир Степанович
  • Баранов Генрих Николаевич
  • Меринова Людмила Васильевна
  • Амарантов Георгий Николаевич
RU2378523C1
ТВЕРДОТОПЛИВНЫЙ ЗАРЯД, СКРЕПЛЕННЫЙ С КОРПУСОМ ИМПУЛЬСНОГО ДВИГАТЕЛЯ 2003
  • Талалаев А.П.
  • Колесников В.И.
  • Энкин Э.А.
  • Зорин В.А.
  • Егорычев С.М.
  • Зайцева Г.И.
  • Батанцев А.В.
RU2251627C1
ЗАРЯД ТВЕРДОГО ТОПЛИВА ДЛЯ РАКЕТНОГО ДВИГАТЕЛЯ 1999
  • Талалаев А.П.
  • Колесников В.И.
  • Молчанов В.Ф.
  • Козьяков А.В.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Аликин В.Н.
RU2178092C2
ТВЕРДОТОПЛИВНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2001
  • Козьяков А.В.
  • Молчанов В.Ф.
  • Пупин Н.А.
  • Федоров С.Т.
RU2213242C2
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ 2009
  • Карцев Геннадий Тимофеевич
RU2408008C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2010
  • Кислицын Алексей Анатольевич
  • Никитин Василий Тихонович
  • Молчанов Владимир Фёдорович
  • Козьяков Алексей Васильевич
  • Амарантов Георгий Николаевич
  • Нешев Сергей Сергеевич
RU2461728C2
ЗАРЯД РАКЕТНОГО ДВИГАТЕЛЯ ТВЁРДОГО ТОПЛИВА 2001
  • Амарантов Г.Н.
  • Баранов Г.Н.
  • Шамраев В.Я.
  • Талалаев А.П.
  • Колесников В.И.
  • Хренов В.С.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Гринберг С.И.
  • Лисовский В.М.
RU2206778C1

Иллюстрации к изобретению RU 2 196 916 C1

Реферат патента 2003 года ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Заряд твердого ракетного топлива, прочно скрепленного с корпусом ракетного двигателя, имеет центральный цилиндрический канал, переходящий в щелевой участок с равномерно увеличивающимися по высоте щелями. Профиль щели в поперечном сечении на расстоянии не менее 1/3 ее высоты от поверхности канала выполнен равномерно расширяющимся с максимальным расширением основания при выходе на канал, определяемым по формуле ρ = 2π•Rк/N•exp(1,5•(0,28-Kт)), где Rк - радиус канала; N - число щелей; Кт - коэффициент торцевой разгрузки, учитывающий наружный радиус заряда по топливу, радиус канала и длину цилиндрической части заряда без учета щелей. Угол наклона основания щелей к оси канала должен находиться в пределах 35 - 60o. Изобретение повышает массу, прочность и надежность заряда твердого топлива. 3 ил.

Формула изобретения RU 2 196 916 C1

Заряд твердого ракетного топлива, прочно скрепленного с корпусом ракетного двигателя, имеющий центральный цилиндрический канал, переходящий в щелевой участок с равномерно увеличивающимися по высоте щелями, отличающийся тем, что профиль щели в поперечном сечении на расстоянии не менее 1/3 ее высоты от поверхности канала выполнен равномерно расширяющимся с максимальным расширением основания при выходе на канал, определяемым по формуле
ρ = 2π•Rк/N•exp(1,5•(0,28-Kт)),
где Rк - радиус канала;
N - число щелей;
Kт - коэффициент торцевой разгрузки, учитывающий наружный радиус заряда по топливу, радиус канала и длину цилиндрической части заряда без учета щелей,
при этом угол наклона основания щелей к оси канала должен находиться в пределах 35 - 60o.

Документы, цитированные в отчете о поиске Патент 2003 года RU2196916C1

US 4936092 А, 26.06.1990
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1998
  • Обозов Л.И.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Семилет В.В.
  • Макаровец Н.А.
  • Куценко Г.В.
  • Некрасов В.И.
  • Шеврикуко И.Д.
  • Амарантов Г.Н.
  • Смирнов В.Д.
  • Кузьмицкий Г.Э.
  • Вронский Н.М.
  • Лисовский В.М.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Филатов В.Г.
RU2125175C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Семилет В.В.
  • Обозов Л.И.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Каширкин А.А.
  • Аляжединов В.Р.
  • Макаровец Н.А.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Винокуров Ю.А.
  • Гринберг С.И.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Денежкин Г.А.
  • Некрасов В.И.
RU2145673C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Семилет В.В.
  • Обозов Л.И.
  • Аляжединов В.Р.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Макаров Л.Б.
  • Лисовский В.М.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Подчуфаров В.И.
  • Калюжный Г.В.
RU2145674C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Обозов Л.И.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Куксенко А.Ф.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Макаров Л.Б.
  • Гринберг С.И.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
RU2150599C1
Станок для сборки стула, табурета или подстолья стола 1929
  • Алякритский Д.И.
SU17715A1
СПОСОБ ПОЛУЧЕНИЯ ЗАВАРНЫХ ПРЯНИКОВ 2012
  • Квасенков Олег Иванович
RU2500149C1
ПРИСПОСОБЛЕНИЕ ДЛЯ АВТОМАТИЧЕСКОГО ПУСКА В ХОД ТУШАЩИХ ПРИБОРОВ 1923
  • Тихоненко А.В.
SU1082A1
Электромагнитный расходомер 2018
  • Сизов Николай Васильевич
RU2694804C1
JP 9053510 А, 27.02.1997.

RU 2 196 916 C1

Авторы

Амарантов Г.Н.

Арутюнян А.П.

Вронский Н.М.

Граменицкий М.Д.

Дмитриев А.Ф.

Колесников В.И.

Кузьмицкий Г.Э.

Лазебный В.Н.

Лисовский В.М.

Пичкалёв Ж.А.

Талалаев А.П.

Федченко Н.Н.

Шамраев В.Я.

Даты

2003-01-20Публикация

2001-07-18Подача