СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА Российский патент 2003 года по МПК G01P15/00 

Описание патента на изобретение RU2196996C2

Изобретение относится к области измерительной техники, в частности к микромеханическим чувствительным элементам инерциального типа, например к акселерометрам и датчикам угловых скоростей.

Известен способ повышения точности чувствительного элемента, например акселерометра, заключающийся в измерении его температуры и изменении выходного сигнала акселерометра в зависимости от измеренного значения температуры [1] . Недостатком этого способа является то, что погрешность чувствительного элемента из-за влияния температуры остается достаточно большой, что особенно может проявляться при быстрых изменениях температуры окружающей среды.

Известен способ повышения точности чувствительного элемента, заключающийся в поддержании его температуры постоянной с помощью соответствующей системы стабилизации, которая включает в себя датчик температуры, встроенный в чувствительный элемент, усилительное устройство и управляемый усилительным устройством нагревательный элемент, который установлен на чувствительном элементе [2]. Указанный способ принят в качестве прототипа. Недостаток прототипа обусловлен тем, что поддержание постоянной температуры датчика температуры (по сути именно это и обеспечивается соответствующей системой) не сохраняет постоянной температуру чувствительного элемента, так как в последнем имеются градиенты температуры. Из-за этого изменение температуры окружающей среды приводит к изменениям выходного сигнала чувствительного элемента.

Целью изобретения является повышение точности чувствительного элемента путем уменьшения влияния температуры на его параметры за счет учета изменения мощности, выделяемой на управляемом нагревательном элементе, при изменении температуры окружающей среды.

Поставленная цель достигается тем, что измеряют величину мощности рассеиваемой управляемым нагревательным элементом, и изменяют выходной сигнал чувствительного элемента в функциональной зависимости от измеренного значения мощности.

На фиг. 1 приведена блок-схема устройства для реализации предложенного способа, а на фиг. 2, 3, 4, 5 приведены графики экспериментально полученных данных при испытании микромеханического акселерометра типа ADXL105 с системой стабилизации температуры.

На чувствительном элементе 1 (см. фиг. 1) установлены или встроены датчик температуры 2 и управляемый нагревательный элемент 4. Выход датчика температуры 2 соединен со входом усилительного устройства 3, выход которого соединен со входом нагревательного элемента 4. Устройство измерения мощности 5 соединено с нагревательным элементом 4, при этом выход устройства измерения мощности 5 соединен с одним из входов устройства преобразования электрического сигнала 6, другой вход которого соединен с выходом чувствительного элемента 1.

На фиг. 2-5 приведены экспериментально полученные зависимости выходного сигнала акселерометра (Uaxl) ADXL105 от времени при нагреве и остывании акселерометра на 30oС, на фиг. 3 - зависимость сигнала (U control), пропорционального мощности (P), рассеиваемой нагревательным элементом 3, при этих же условиях, на фиг. 4 - выходной сигнал датчика температуры (Ut) при этих же условиях, на фиг. 5 - зависимости выходного сигнала акселерометра от мощности, рассеиваемой нагревательным элементом 3, (Uaxl = fun(U control)) при нагреве и остывании акселерометра. Все данные получены при неизменном положении акселерометра.

Предложенный способ заключается в следующем. Элементы 2-4 (фиг. 1) образуют систему стабилизации температуры чувствительного элемента. Измеряя мощность, рассеиваемую нагревательным элементом 3, например, с помощью устройства измерения мощности 5, которое преобразует величину мощности в электрический сигнал, изменяют выходной сигнал чувствительного элемента в зависимости от выходного сигнала с помощью устройства преобразования электрического сигнала 6. В полученном после такого преобразования сигнале составляющая, которая зависит от температуры окружающей среды, оказывается уменьшенной. Таким образом, температурная погрешность чувствительного элемента благодаря предложенному способу уменьшается.

Иллюстрацией предложенного способа являются графики на фиг. 2-5. Как видно из графика на фиг. 4, при изменении температуры окружающей среды на 30oС выходной сигнал датчика температуры практически не меняется. Отметим, что это достигнуто за счет использования в системе стабилизации температуры чувствительного элемента ПИ-регулятора (регулятора с пропорциональным и интегрирующим звеньями). Однако даже при такой стабилизации температуры наблюдается (см. фиг. 2) изменение выходного сигнала акселерометра на величину, равную примерно 5 мВ при крутизне сигнала 1 B/g. При сравнении графиков на фиг. 2 и 3 можно установить, что они различаются практически только масштабными коэффициентами. Это подтверждается и тем, что две зависимости Uaxl = f(U control) имеют линейный характер, примерно одинаковый наклон и отличаются незначительно (примерно на 1 мВ) между собой на постоянную составляющую. Поэтому для данного случая для уменьшения зависимости выходного сигнала акселерометра от изменений температуры окружающей среды достаточно к выходному сигналу акселерометра прибавить сигнал, полученный с выхода измерителя мощности с весовым коэффициентом, равным примерно -0,01. Результирующая ошибка при этом уменьшится до 1-2 мВ, т.е. примерно в 2-3 раза.

Отметим, что зависимость Uaxl = f(U control) может отличаться от линейной (ее характер зависит от конструкции чувствительного элемента, зависимости его выходного сигнала от температуры, расположения датчика температуры и нагревателей на чувствительном элементе), поэтому выбор закона изменения выходного сигнала чувствительного элемента в зависимости от рассеиваемой нагревательным элементом мощности целесообразно делать на основании экспериментальных данных, полученных экспериментальным или расчетным путем.

Литература
1. AN"Using the ADXL202 Accelerometer as a Multifunction Sensor (Tilt, Vibration, and Shock) in Car Alarms".

2. Harvey Weinberg "Temperature Compensation Тechniques for Low g iMEMS Accelerometers" http://www.analog. com/industry/iMEMS/markets/industrial/temp_compensati on. html.

Похожие патенты RU2196996C2

название год авторы номер документа
УСТРОЙСТВО СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ МИКРОМЕХАНИЧЕСКОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА 1999
  • Некрасов Я.А.
RU2244936C2
Микромеханический вибрационный кольцевой гироскоп 2022
  • Бабаев Евгений Владимирович
  • Косторной Андрей Николаевич
  • Большаков Дмитрий Сергеевич
  • Крючкова Елена Алексеевна
  • Орлов Алексей Петрович
  • Гончаров Илья Константинович
RU2800067C1
СПОСОБ ИЗМЕРЕНИЯ УГЛОВОЙ СКОРОСТИ И МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Некрасов Яков Анатольевич
RU2289100C1
ИЗМЕРИТЕЛЬ УГЛОВОЙ СКОРОСТИ 2012
  • Некрасов Яков Анатольевич
RU2486468C1
МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП 2013
  • Некрасов Яков Анатольевич
RU2535248C1
СПОСОБ ИЗМЕРЕНИЯ ЗАЗОРА МЕЖДУ ЭЛЕКТРОДАМИ И ПОДВИЖНОЙ МАССОЙ МИКРОМЕХАНИЧЕСКОГО УСТРОЙСТВА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Некрасов Яков Анатольевич
  • Беляев Яков Валерьевич
RU2338997C2
МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП 2010
  • Некрасов Яков Анатольевич
RU2447403C1
МИКРОМЕХАНИЧЕСКИЙ ГИРОСКОП КОМПЕНСАЦИОННОГО ТИПА 2010
  • Некрасов Яков Анатольевич
  • Моисеев Николай Владимирович
RU2447402C1
СПОСОБ ПОДАВЛЕНИЯ ЛОЖНОГО СИГНАЛА В ИЗМЕРИТЕЛЕ УГЛОВОЙ СКОРОСТИ С МИКРОМЕХАНИЧЕСКИМИ ГИРОСКОПАМИ 2012
  • Некрасов Яков Анатольевич
RU2486469C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ РОТОРА МИКРОМЕХАНИЧЕСКОГО ГИРОСКОПА ПО ОСИ ВОЗБУЖДЕНИЯ ПЕРВИЧНЫХ КОЛЕБАНИЙ 2006
  • Некрасов Яков Анатольевич
RU2319928C2

Иллюстрации к изобретению RU 2 196 996 C2

Реферат патента 2003 года СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА

Способ предназначен для использования в измерительной технике. Способ заключается в стабилизации температуры с помощью управляемого нагревательного элемента, установленного в чувствительном элементе или на его поверхности. Дополнительно определяют величину мощности, выделяемой нагревательным элементом, и изменяют выходной сигнал чувствительного элемента в зависимости от этой мощности. Изменение выходного сигнала обеспечивает снижение температурной погрешности чувствительного элемента, обусловленной наличием градиентов температуры в нем и погрешностью системы стабилизации температуры. 5 ил.

Формула изобретения RU 2 196 996 C2

Способ повышения точности чувствительного элемента, заключающийся в стабилизации его температуры с помощью управляемого нагревательного элемента, установленного в чувствительном элементе или на его поверхности, отличающийся тем, что дополнительно определяют величину мощности, выделяемой нагревательным элементом, и изменяют выходной сигнал чувствительного элемента в зависимости от этой мощности.

Документы, цитированные в отчете о поиске Патент 2003 года RU2196996C2

ПЕЛЬПОР Д.С
и др
Динамически настраиваемые гироскопы
- М.: Машиностроение, 1988, с
Искусственный двухслойный мельничный жернов 1921
  • Паншин В.И.
SU217A1
АКСЕЛЕРОМЕТР 1982
  • Курносов В.И.
  • Андрюхин А.И.
RU2120639C1
АКСЕЛЕРОМЕТР КОМПЕНСАЦИОННОГО ТИПА 1988
  • Абаимов В.В.
  • Ивченко Н.Н.
  • Китанин Н.Г.
RU2041465C1
СПОСОБ КОМПЕНСАЦИИ ТЕМПЕРАТУРНОЙ ПОГРЕШНОСТИ КРУТИЗНЫ ХАРАКТЕРИСТИКИ АКСЕЛЕРОМЕТРА 1993
  • Баженов В.И.
  • Вдовенко И.В.
  • Горбачев Н.А.
  • Масленников А.В.
  • Рязанов В.А.
  • Соловьев В.М.
RU2028001C1
US 4338819, 13.07.1982.

RU 2 196 996 C2

Авторы

Некрасов Я.А.

Даты

2003-01-20Публикация

1999-11-30Подача