Изобретение относится к способу термической обработки измельченной влажной железной руды, заключающемуся в том, что руду пропускают через зону сушки, при этом до подачи в зону восстановления руду, температура которой на выходе из зоны сушки составляет от 120 до 400oС, нагревают при непосредственном контакте с горячим газом до температуры от 700 до 1100oС.
Способы такого типа известны, например, из патентов США 5527379, 5560726 и 5603748. При этом термическая обработка служит для подготовки руды для загрузки в восстановительное устройство, которое работает с одним или несколькими псевдоожиженными слоями. В качестве псевдоожижающего газа применяют обогащенный водородом газ, который в качестве другого восстанавливающего компонента может содержать еще и окись углерода.
При этом установлено, что фракции руды, имеющие особенно мелкую зернистость, препятствуют проведению восстановительного процесса и снижают качество продукта, поскольку преимущественно эти мелкозернистые фракции выносятся из псевдоожиженного слоя. Вследствие этого время их пребывания в зоне восстановления сокращается настолько, что они уже не восстанавливаются в достаточной мере.
В основу изобретения положена задача создания способа термической предварительной обработки железосодержащей руды или рудного концентрата для того, чтобы руда, подаваемая в зону восстановления, не содержала мелких фракций в количествах, создающих помехи. Эта задача решается согласно изобретению вышеуказанным способом посредством того, что руду, поступающую из зоны сушки, полностью или частично пропускают через разделительное устройство и отделяют крупнозернистую фракцию руды от мелкозернистой фракции, при этом мелкозернистую фракцию руды загружают в грануляционное устройство и получают гранулят железной руды, который подают в зону сушки, а крупнозернистую фракцию руды нагревают до температуры от 700 до 1100oС прежде, чем подавать ее в зону восстановления. В качестве разделительного устройства могут использоваться, например, сито или воздушный сепаратор.
Особенно мелкозернистая руда, присутствие которой в восстановительной установке нежелательно, образуется разными путями. Во-первых, во время сушки и нагрева измельченной руды образуется пыль, в том числе мелкая фракция получается вследствие растрескивания крупных зерен во время нагрева. Кроме того, необогащенная руда, предназначенная для восстановления в псевдоожиженном слое, еще до сушки измельчается на частицы оптимального размера от 0,1 до 3 мм. Для этого могут использоваться, например, известные сами по себе роликовые прессы, однако при этом неизбежно образуются также мелкие частицы руды. Просеивание и гранулирование этой мелкозернистой фракции, как, например, предлагается в патенте США 5560762, не решает полностью проблемы мелких фракций, поскольку мелкие фракции вновь образуются при сушке и термической предварительной обработке вследствие истирания и растрескивания. Способ согласно изобретению эффективно и экономично препятствует попаданию мелких частиц в восстановительное устройство в количестве, создающем проблемы.
Обычно стремятся к тому, чтобы по меньшей мере 50% руды, поступающей из зоны сушки, направлялось в разделительное устройство для отделения мелкозернистой фракции руды. В разделительном устройстве целесообразно обратить внимание на то, чтобы отделенная мелкозернистая фракция руды по меньшей мере на 80 вес. % состояла из частиц размером не более 0,2 мм. Предпочтительно, чтобы гранулят руды, выходящий из грануляционного устройства, по меньшей мере на 50 вес. % состоял из частиц размером не менее 0,3 мм. Если уже до сушки из необогащенной руды отсеивают мелкозернистую фракцию, то эту необогащенную мелкую руду можно также загрузить в имеющееся грануляционное устройство. Необогащенная мелкая руда содержит обычно по меньшей мере 80 вес.% частиц размером не более 0,2 мм.
Руда, которую подают в восстановительное устройство, состоит обычно по меньшей мере на 80 вес.% из частиц размером от 0,1 до 3 мм. Это желательно прежде всего тогда, когда первая восстановительная секция выполнена в виде циркулирующего псевдоожиженного слоя, как это имеет место в известных способах, описанных в вышеуказанных патентах США. В циркулирующем псевдоожиженном слое поддерживают относительно высокие скорости газа для псевдоожижения и восстановительного газа. Скорость газа в пустой трубе составляет обычно от 3 до 10 м/с. Целесообразно, чтобы за первой выполненной таким образом восстановительной секцией следовала вторая восстановительная секция, в которой псевдоожиженный слой находится в состоянии плотной фазы. При этом скорость газа для псевдоожижения и восстановительного газа в пустой трубе составляет от 0,3 до 1 м/с.
В дальнейшем изобретение поясняется описанием конкретных вариантов его выполнения со ссылкой на сопровождающий чертеж, на котором изображена технологическая схема.
По трубопроводу 1 подводят и загружают в сушилку 2 Вентури измельченную влажную железную руду или рудный концентрат. Содержание железа в руде обычно составляет по меньшей мере 60 вес.%. Руда, которую до этого пропустили, например, через устройство для измельчения (не показано), содержит фракции размером не более 10 мм, предпочтительно не более 6 мм. Выгодно, чтобы руда из трубопровода 1 по меньшей мере на 80 вес.% состояла из фракций размером до 4 мм. К сушилке 2 подводят по трубопроводу 3 горячий газ, благодаря чему руду перемещают наверх, осушают и по трубопроводу 5 загружают в циклон 4. Газ, содержащий воду и пыль, отводят в трубопровод 4а и направляют в пылеулавливающее устройство (не показано). Осушенную руду, температура которой составляет обычно от 120 до 400oС, выводят из циклона 4 по трубопроводу 6 и подают в разделительное устройство, которое в данном случае выполнено в виде воздушного сепаратора 7. Крупнозернистую фракцию удаляют из воздушного сепаратора 7 через трубопровод 10, а мелкозернистую фракцию подают через трубопровод 11 в гранулятор 12. В случае, если осушенную руду не хотят полностью подавать из циклона 4 в воздушный сепаратор 7, можно добавить часть руды через байпасный трубопровод 14 (показан пунктиром) непосредственно к крупной фракции из трубопровода 10.
В случае необходимости в гранулятор 12 вводят через трубопровод 15 вяжущие вещества, например бентонит. Кроме того, можно подать в гранулятор через трубопровод 16 остаток на фильтре (лепешку), полученный из газоочистителя (не показан) и содержащий в большом количестве мелкоизмельченную железную руду. С помощью известного гранулятора 12 получают гранулят железной руды, причем по меньшей мере 50 вес.% гранулята составляют фракции размером по меньшей мере 0,3 мм. Данный гранулят направляют по пути подвода 18 в сушилку 2.
Крупную фракцию руды из трубопровода 10 нагревают до температуры от 700 до 1100oС, чаще максимум 1000oС. Для этого служит циркулирующий псевдоожиженный слой в реакторе 20, в который через трубопровод 21 подают твердое, жидкое или газообразное топливо, а через трубопровод 22 - воздух. С помощью горячих газообразных продуктов сгорания твердые вещества перемещают наверх в циклон-сепаратор 23, при этом горячие содержащие пыль газы направляют по трубопроводу 3 в сушилку 2. Нагретую крупную руду выводят из циклона 23 через трубопровод 26 и частично возвращают через трубопровод 27 в нижнюю часть камеры реактора 20. Остаточную руду, схватившуюся при нагревании, подают через трубопровод 28 в восстановительное устройство.
Восстановительное устройство (показано на чертеже схематично) содержит первую восстановительную секцию 30, вторую восстановительную секцию 31 и газоочиститель 32. Первая секция 30 работает с циркулирующим псевдоожиженным слоем, а вторая восстановительная секция 31 выполнена в виде стационарного псевдоожиженного слоя. Существенные признаки такого восстановительного устройства известны из патентов США 5527379, 5560762 и 5603748. Горячий восстановительный газ, который кроме водорода может содержать также окись углерода, вводят в трубопровод 33 и в качестве газа для псевдоожижения подают частично в первую секцию 30 и во вторую секцию 31. Отходящие газы из второй секции 31 подают через трубопровод 34 в первую секцию 30. Отходящий газ, выведенный из первой секции 30 по трубопроводу 35 и содержащий водяной пар и пыль, возвращают для очистки и частично для повторного использования в устройство 32, где также получают свежий восстановительный газ. Руду, частично восстановленную в первой секции 30, через трубопровод 36 подают во вторую секцию 31 для дальнейшего восстановления, а готовый продукт отводят по трубопроводу 37 и обычно подают в не показанное на чертеже устройство для брикетирования и охлаждения.
Если при восстановлении хотят также использовать уголь, то подают мелкоизмельченный уголь по трубопроводу 38 вместе с газом, содержащим О2 и поступающим по трубопроводу 39, в известное устройство 40 для газификации угля, где производят посредством частичного окисления газовый продукт, содержащий Н2 и СО. Этот газовый продукт можно направить по трубопроводу 41 (показан на чертеже пунктиром) также в первую восстановительную секцию 30.
Пример
В устройстве, показанном на чертеже, но без трубопровода 14 и восстановительного устройства, термически обрабатывают гематитовую мелкую руду, содержание железа в которой составляет 68,5 вес.%. Содержание воды в руде составляет 7 вес.%. В сушилку 2 Вентури подают 100 т/ч указанной руды, измельченной на фракции размером менее 3 мм. Все количественные показатели относятся к сухим твердым веществам, если не указано иное. В сушилку 2 подают по трубопроводу 3 газ, имеющий температуру 900oС, и по трубопроводу 18 рудный гранулят с содержанием воды 8,5 вес.% в количестве 26 т/ч. Осушенную руду, имеющую температуру 250oС, отводят по трубопроводу 5 в количестве 126 т/ч. Воздушный сепаратор 7 приводится в действие циркуляцией воздуха, так что обеспечивается подвод и отведение газа. Крупнозернистую фракцию, имеющую нижнюю границу размера зерен 0,1 мм, подают в количестве 106,5 т/ч по трубопроводу 10, а мелкозернистую руду подают в гранулятор 12 в количестве 13 т/ч. Одновременно в гранулятор подают 3100 кг/ч воды, 104 кг/ч бентонита и 11,7 т/ч остатка на фильтре. Остаток на фильтре, полученный из газоочистителя, состоит на 90 вес. % из железной руды и на 10 вес.% из воды. Гранулятор производит 26 т/ч микрогранул, содержащих 8,5 вес.% воды, имеющих максимальный размер гранул 3 мм и средний размер гранул (d50) 0,4 мм. Доля гранул, имеющих размер менее 0,1 мм, составляет 5 вес.% от общего количества произведенных микрогранул. Эти микрогранулы направляют по пути подвода 18 в сушилку 2.
В реактор 20 подают 4536 н м3/ч природного газа и 46600 н м3/ч воздуха, благодаря чему в реакторе создается температура 900oС. В трубопровод 28 поступает готовая схватившаяся гранулированная железная руда для восстановительного устройства в объеме 106,5 т/ч.
Измельченную влажную железную руду пропускают сначала через зону сушки, при этом температура руды на выходе из зоны сушки составляет от 120 до 400oС. Затем руду нагревают непосредственным контактом с горячим газом до температуры от 700 до 1100oС прежде, чем подают ее в зону восстановления. Руду, выходящую из зоны сушки, полностью или частично пропускают через разделительное устройство и отделяют крупнозернистую фракцию руды от мелкозернистой фракции. Мелкозернистую фракцию руды загружают в грануляционное устройство и получают гранулят железной руды, который подают в зону сушки. Крупнозернистую фракцию руды нагревают до температуры от 700 до 1100oС прежде, чем подают ее в восстановительную зону. Реализация изобретения позволит провести восстановление руды, не содержащей мелких фракций в количествах, создающих помехи. 7 з.п. ф-лы, 1 ил.
US 5560762, 01.10.1996 | |||
СПОСОБ ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ НЕФРОГЕННОЙ ГИПЕРТЕНЗИИ ПРИ ГЛОМЕРУЛОНЕФРИТЕ У ДЕТЕЙ | 2002 |
|
RU2240045C2 |
GB 1127145, 11.09.1968 | |||
Модульная насосная станция (МНС) с поршневым водяным насосом и гидравлическим приводом | 2022 |
|
RU2800211C1 |
Способ восстановления окислов металлов | 1972 |
|
SU450832A1 |
Авторы
Даты
2003-05-10—Публикация
1998-04-17—Подача