СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ОТХОДЯЩИХ ГАЗАХ Российский патент 2003 года по МПК B01J37/04 B01J23/847 B01J21/04 

Описание патента на изобретение RU2205069C1

Изобретение относится к способам получения катализаторов для очистки отходящих промышленных газов от сернистых соединений, в частности, для окисления сероводорода и органических соединений серы в двуокись серы, содержащихся в хвостовых газах процесса Клауса.

Известны катализаторы окисления сернистых соединений на основе окисных носителей с разными активными добавками. Наиболее широко применяются ванадийсодержащие катализаторы.

К способам получения этих катализаторов относятся, в первую очередь, методы, основанные на пропитке носителя оксида алюминия растворами солей ванадия (US 4314983, МПК С 01 В 17/02, 1979) и железа или методом пропитки с использованием в качестве носителя двуокиси титана и двуокиси кремния.

Однако эти методы более трудоемки и энергоемки, чем метод смешения активных компонентов.

Наиболее близким к заявляемому является способ повышения активности ванадиевого катализатора за счет использования катализатора, который содержит в качестве активных компонентов соединения ванадия, железа, а в качестве связующего используют гидроксид алюминия (RU 2064833, МПК6 B 01 J 23/847, 37/04, 1996). Катализатор получают смешением гидроксида алюминия с порообразующими добавками, соединениями железа, ванадия, затем вводят азотную кислоту с последующей формовкой, сушкой и термообработкой при температуре 680-850oС.

Недостатком способа получения катализатора является недостаточно высокая механическая прочность полученного катализатора и соответственно короткий срок его службы.

Задачей, решаемой настоящим изобретением, является разработка эффективного катализатора с повышенной механической прочностью и высокой каталитической активностью.

Поставленная задача решается за счет способа получения катализатора для окисления сернистых соединений в отходящих газах с использованием связующего на основе гидроксида алюминия с последующим смешением с порообразующими добавками и соединениями ванадия, железа, с последующим формованием, сушкой и прокаливанием, связующее представляет собой гидроксид алюминия на основе рентгеноаморфного слоистого соединения алюминия формулы Аl2О3•nH2O, где n= 0,3-1,5, а в качестве соединения железа используют оксид железа (III), и прокаливание проводят при температуре 680-720oС.

В качестве кислородсодержащего соединения железа используют оксид железа (III) с размером частиц предпочтительно 2-3 мкм.

В качестве порообразующей добавки используют древесную муку с размером частиц предпочтительно менее 63 мкм, или γ-оксид алюминия в количестве 2-15 мас.%, или их смесь.

Рентгеноаморфное слоистое соединение алюминия получают по способу быстрой дегидратации гиббсита.

В предложенном способе в отличие от известного предлагается использовать связующее на основе рентгеноаморфного слоистого соединения алюминия формулы Аl2О3•n H2O, где n=0,3-1,5, а в качестве соединения железа используют оксид железа (III), с порообразующими добавками с последующим перемешиванием, формованием, сушкой и прокаливанием. В качестве соединений железа предлагается использовать только оксид железа (III). Температура прокаливания снижена и не должна превышать 720oС. Повышение температуры прокаливания выше 720oС приводит к понижению прочности катализатора и его активности.

Особенностью способа получения катализатора является одновременное формирование как структуры носителя Аl2О3, так и активного компонента в виде соединения ванадия и железа по мере подъема температуры до 680-720oС. Причем дефектная структура слоистого рентгеноаморфного соединения алюминия формулы Аl2О3•nH2O, где n= 0,3-1,5 способствует получению активного компонента с высокой дисперсностью, что приводит к увеличению как активности катализатора в реакции окисления сернистых соединений, так и увеличению механической прочности катализатора за счет образования более крепкой связи частиц активного компонента с поверхностью оксида алюминия.

Высокая дисперсность активного компонента позволяет значительно снизить температуру прокаливания катализатора по сравнению с аналогом, т.к. малые размеры частиц соединения ванадия и железа на оксиде алюминия позволяют достичь желаемого фазового состава активного при более низкой температуре.

Таким образом, способ получения катализатора позволяет значительно повысить прочность катализатора и каталитическую активность.

Способ осуществляется следующим образом.

Гидроксид алюминия на основе слоистого рентгеноаморфного соединения формулы Аl2О3•nН2О, где n=0,3-1,5 смешивают с соединениями ванадия, оксида железа (III), порообразующей добавкой, формуют в гранулы требуемой формы, сушат и прокаливают при температуре 680-720oС.

Получают катализатор, содержащий равномерно распределенные в оксиде алюминия соединения железа и ванадия в пересчете на металл, мас.%:
Железо - 1-3,5
Ванадий - 1-3,5
Каталитическую активность определяли в проточной лабораторной установке при атмосферном давлении в реакции окисления сероводорода при температуре 300±15oС при времени контакта 0,3 с и содержании исходных компонентов в газовой смеси (об. доли) H2S - 1,0%, SO2 - 1,0, О2 - 5,0%, Н2O - 20,0 %, азот - остальное (размер гранул 4 мм).

Анализ исходной смеси и конечных продуктов проводили с помощью хромотографов ЛХМ-8МД и Газохром-3101.

В примерах, характеризующих способ, приведены данные по активности, выраженные в процентах по степеням конверсии сероводорода в выбранных условиях, близких к промышленному использованию разработанного катализатора.

Условия приготовления катализатора приведены в таблице.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 (по прототипу).

К 280 г связующего - гидроксида алюминия, прошедшего термомеханохимическую обработку, добавляют 40 г порообразующей добавки - γ -оксида алюминия, соль железа и порошок пятиокиси ванадия. Перемешивают сухие компоненты в течение 10 мин. Далее добавляют раствор азотной кислоты в воде (10 мл концентрированной азотной кислоты в 150 мл воды). Перемешивают в течение 15 мин. Далее массу экструдируют, сушат, прокаливают при температуре 850oС в течение 2 ч.

Пример 2.

К 280 г связующего - гидроксида алюминия на основе рентгеноаморфного соединения формулы Аl2О3•0,65Н2О добавляют азотную кислоту, соединения V2O5 и Fе2О3 с размером частиц 2-3 мкм. γ-оксид алюминия, древесную муку с размером частиц менее 63 мкм, компоненты перемешивают в течение 15-20 мин, формуют в гранулы катализатора сферической формы диаметром 5 мкм, сушат и прокаливают при температуре 680oС.

Содержание железа в катализаторе составляет 1-3,5%, содержание ванадия 1-3,5 мас.%.

Пример 3.

Аналогичен примеру 2, только используют связующее на основе Аl2О3•0,75Н2О и содержание γ-оксида алюминия равно 15 мас.%.

Пример 4.

Аналогичен примеру 2, только используют связующее на основе Аl2О3•0,85Н2О и размер частиц древесной муки составляет 63 мкм.

Пример 5 (запределенный пример).

Аналогичен примеру 2, только температура прокалки равна 600oС.

Пример 6 (запредельный пример).

Аналогичен примеру 2, только температура прокалки равна 800oС.

Пример 7.

Аналогичен примеру 2, только в качестве порообразующей добавки введена древесная мука в количестве 5 мас.%.

Пример 8.

Аналогичен примеру 2, только размер частиц оксида железа (III) составляет 5 мкм, и используют связующее на основе Al2О3•1,5Н2О.

Пример 9.

Аналогичен примеру 2, только содержание порообразуюших добавок равно:
γ-Al2O3 7 мас.%, древесной муки - 3 маc.%.

Пример 10.

Аналогичен примеру 2, только содержание порообразующей добавки γ-Аl2О3 равно 2 мас.% и температура прокаливания равна 710oС.

Как видно из приведенных примеров, предлагаемый способ прост для промышленной реализации, катализаторы, полученные таким способом, обладают высокой механической прочностью и активностью.

Как следует из таблицы, при снижении температуры прокаливания при использовании заявляемого связующего активность катализатора снижается, а при повышении температуры прокаливания теряется прочность катализатора. Снижение количества порообразующих добавок приводит к ухудшению пористой структуры катализатора за счет уменьшения объема транспортных пор, что приводит к снижению активности катализатора, при увеличении количества порообразующих добавок падает прочность катализатора за счет увеличения объема крупных пор.

Для внесения активных компонентов используются сухие соединения ванадия и оксида железа (III).

В качестве соединений ванадия используют предпочтительно оксид ванадия (V). В качестве соединений железа используют оксид железа (III) предпочтительно с размером частиц 2-3 мкм.

Таким образом, приготовление катализатора по предлагаемому способу позволяет получить катализатор с повышенной механической прочностью и высокой каталитической активностью.

Технология приготовления катализатора проста, оптимальная пористая структура катализатора, а также структура фаз носителя и активного компонента формируются в процессе приготовления катализатора.

Использование заявляемого способа по сравнению с прототипом приводит к увеличению механической прочности, а также активности катализатора окисления сернистых соединений.

Похожие патенты RU2205069C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Кладова Н.В.
  • Борисова Т.В.
  • Макаренко М.Г.
  • Качкин А.В.
  • Сотников В.В.
RU2197323C1
КАТАЛИЗАТОР ДЛЯ ОКСИХЛОРИРОВАНИЯ ЭТИЛЕНА В 1,2-ДИХЛОРЭТАН И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Борисова Т.В.
  • Кладова Н.В.
  • Макаренко М.Г.
  • Сотников В.В.
  • Качкин А.В.
RU2183987C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ОТХОДЯЩИХ ГАЗАХ 1994
  • Кладова Н.В.
  • Савостин Ю.А.
  • Балашов В.А.
  • Исаева Г.Г.
RU2064833C1
КОМПОЗИЦИЯ НА ОСНОВЕ ДИОКСИДА ТИТАНА И ОКСИДА АЛЮМИНИЯ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ЕЕ ПРИМЕНЕНИЕ 2015
  • Сакаева Наиля Самильевна
  • Кильдяшев Сергей Петрович
  • Климова Ольга Анатольевна
RU2574599C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ УДАЛЕНИЯ КИСЛОРОДА ИЗ СЕРОВОДОРОДСОДЕРЖАЩИХ ГАЗОВ 1995
  • Кладова Н.В.
  • Савостин Ю.А.
  • Балашов В.А.
  • Исаева Г.Г.
RU2087192C1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ОКСИДА УГЛЕРОДА В ГАЗОВЫХ ВЫБРОСАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2001
  • Мулина Т.В.
  • Борисова Т.В.
  • Любушкин В.А.
  • Чумаченко В.А.
RU2199387C1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ОКСИДА УГЛЕРОДА В ГАЗОВЫХ ВЫБРОСАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2001
  • Мулина Т.В.
  • Борисова Т.В.
  • Любушкин В.А.
  • Чумаченко В.А.
RU2199388C2
НОСИТЕЛЬ МИКРОСФЕРИЧЕСКИЙ ДЛЯ КАТАЛИЗАТОРОВ 2005
  • Борисова Татьяна Владимировна
RU2271248C1
ХРОМСОДЕРЖАЩИЙ КАТАЛИЗАТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2001
  • Мулина Т.В.
  • Любушкин В.А.
  • Чумаченко В.А.
  • Макаренко М.Г.
RU2191625C1
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Борисова Т.В.
  • Качкин А.В.
  • Макаренко М.Г.
  • Мельникова О.М.
  • Сотников В.В.
RU2200143C1

Иллюстрации к изобретению RU 2 205 069 C1

Реферат патента 2003 года СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ОТХОДЯЩИХ ГАЗАХ

Изобретение относится к способам получения катализаторов для очистки отходящих промышленных газов от сернистых соединений, в частности, для окисления сероводорода и органических соединений серы в двуокись серы, содержащихся в хвостовых газах процесса Клауса. Описан способ получения катализатора для окисления сернистых соединений в отходящих газах с использованием связующего на основе гидроксида алюминия с последующим смешением с порообразующими добавками и соединениями ванадия, железа, с последующим формованием, сушкой и прокаливанием, связующее представляет собой гидроксид алюминия на основе рентгеноаморфного слоистого соединения алюминия формулы Al2О3•nH2О, где n= 0,3-1,5, а в качестве соединения железа используют оксид железа (III), и прокаливание проводят при температуре 680-720oС. Использование заявляемого способа по сравнению с прототипом приводит к увеличению механической прочности, а также активности катализатора окисления сернистых соединений. 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 205 069 C1

1. Способ получения катализатора для окисления сернистых соединений в отходящих газах с использованием связующего на основе гидроксида алюминия с последующим смешением с порообразующими добавками и соединениями ванадия, железа, с последующим формованием, сушкой и прокаливанием, отличающийся тем, что используют связующее, представляющее собой гидроксид алюминия на основе рентгеноаморфного слоистого соединения алюминия формулы Аl2О3•nН2О, где n= 0,3-1,5, а в качестве соединения железа используют оксид железа (III), прокаливание проводят при температуре 680-720oС. 2. Способ по п. 1, отличающийся тем, используют оксид железа (III) с размером частиц 2-3 мкм. 3. Способ по п. 1, отличающийся тем, что в качестве порообразующей добавки используют древесную муку с размером частиц менее 63 мкм в количестве 3-5 маc. %, или γ-оксид алюминия в количестве 2-15 маc. %, или их смесь.

Документы, цитированные в отчете о поиске Патент 2003 года RU2205069C1

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ОТХОДЯЩИХ ГАЗАХ 1994
  • Кладова Н.В.
  • Савостин Ю.А.
  • Балашов В.А.
  • Исаева Г.Г.
RU2064833C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ОТХОДЯЩИХ ГАЗАХ 1994
  • Кладова Н.В.
  • Савостин Ю.А.
  • Коробко Л.Н.
  • Балашов В.А.
  • Исаева Г.Г.
  • Кузнецов П.Н.
RU2064832C1
RU 95113198 А1, 27.06.1997
УСОВЕРШЕНСТВОВАННЫЙ КОМПЬЮТЕРНО-РЕАЛИЗУЕМЫЙ СПОСОБ ЗАДАНИЯ ТОЧЕК ПОСТРОЕНИЯ ОПОРНЫХ ЭЛЕМЕНТОВ ОБЪЕКТА, ИЗГОТАВЛИВАЕМОГО В ХОДЕ СТЕРЕОЛИТОГРАФИЧЕСКОГО ПРОЦЕССА 2015
  • Мароцин Алессандро
RU2663245C2

RU 2 205 069 C1

Авторы

Кладова Н.В.

Борисова Т.В.

Даты

2003-05-27Публикация

2002-01-11Подача