КОМПОЗИЦИОННЫЙ МАТЕРИАЛ Российский патент 2003 года по МПК C01B31/06 C01B31/36 C04B35/52 

Описание патента на изобретение RU2206502C2

Изобретение относится к области композиционных материалов, а точнее к алмазосодержащим композиционным материалам с высокой теплопроводностью и температуропроводностью.

Материалы с высокой теплопроводностью эффективно используются в теплообменных устройствах для изготовления теплоотводов, теплообменников и т.п.. Среди металлов наивысшие теплопроводности имеют медь (400 Вт/м•К) и серебро (430 Вт/м•К).

Однако серебро довольно дорого, а применение даже меди в ряде случаев не обеспечивает необходимой теплопроводности изделий. Кроме того, медь обладает довольно высокой плотностью (8,9 г/см3), что утяжеляет конструкцию. Высокая плотность меди приводит также к не очень высоким значениям ее температуропроводности a = 1,2•10-4 м2/c(a = λ/c•ρ, где а - коэффициент температуропроводности, λ - коэффициент теплопроводности, ρ - плотность). Тем самым ограничивается применение меди для изделий, в которых требуется быстрая теплопередача. Применение меди также ограничено ее склонностью к окислению. Образующийся на поверхности оксид меди существенно ухудшает тепловые свойства всей детали.

Известен композиционный материал, состоящий из алмазных зерен, связанных медью и медными сплавами (Патент США 5783316, кл.428/660, В 23 К 031/02). В этом материале обеспечивается теплопроводность выше теплопроводности меди за счет введения в композит алмазных зерен, имеющих теплопроводность более 1000 Вт/м•К. Для повышения адгезии медных сплавов к частицам алмаза последние предварительно покрывают тонким слоем карбидообразующих металлов.

Недостатками известного материала являются его относительно высокая плотность, связанная с высокой плотностью меди, и высокий температурный коэффициент линейного расширения, также определяемый медью. Последнее приводит к значительным температурным деформациям изделий при повышенных температурах. Материал, как и чистая медь, недостаточно устойчив к окислению.

В качестве наиболее близкого решения к заявляемому может быть выбран конструкционный материал, описанный в патенте РФ 2151126, кл.C 04 B 35/52. Известный материал состоит из зерен алмаза в матрице, образованной карбидом кремния и кремнием, при этом зерен алмаза - 20-60 об.%, кремния - 1-40 об.%, карбида кремния -3-70 об.%.

Известный конструкционный материал обладает хорошим комплексом физико-механических и теплофизических свойств, таких как низкая плотность, высокий модуль упругости, низкий термический коэффициент расширения. Он стоек к окислению.

Однако теплопроводность материала находится на недостаточно высоком (до 250 Вт/м•К) уровне. Последнее ограничивает применение известного материала. Температуропроводность известного материала по расчету авторов составляет 1,3•10-4 м2/с.

Задачей заявляемого изобретения является создание материала с высокой теплопроводностью и температуропроводностью, а именно имеющего при комнатной температуре коэффициент теплопроводности более 300 Вт/м•К и коэффициент температуропроводности не менее 1,6•10-4 м2/с.

Технический результат достигается тем, что материал, состоящий из алмазных зерен в матрице из карбида кремния и кремния, содержит указанные компоненты в следующем соотношении: зерна алмаза - 50-85 об.%, кремний - 2-49 об. %, карбид кремния - 1-48 об.%. Оптимальными составами материала являются те, в которых содержание зерен с размером более 40 мкм составляет не менее 25% от общего содержания алмаза в материале.

Заявляемый материал получают способом, включающим следующие стадии.

1. Формование пористой заготовки из алмазосодержащей шихты.

2. Термообработка полученной заготовки для образования полуфабриката, содержащего алмаз и углерод.

3. Пропитка полученного полуфабриката расплавленным кремнием.

При этом технология получения материала обеспечивает его получение в виде изделий заданной формы.

Формование заготовки осуществляют из смеси алмазных кристаллов размером не менее 1 мкм, при этом формуют заготовку с пористостью 12÷50 об.% из алмазных зерен одного размера или смеси алмазных зерен разных размеров. Содержание зерен алмаза в заготовке - не менее 95 мас.%.

Формование заготовки осуществляют известными способами, такими как прессование, шликерное литье, шликерный налив с использованием известного оборудования, со связующим и без него.

Стадию термообработки осуществляют до уменьшения массового содержания алмазных кристаллов в заготовке на не более чем 20 мас.%. Это возможно реализовать двумя путями:
1) путем выдержки заготовки в среде газообразного углеводорода или углеводородов при повышенной температуре, например, природного газа при t= 750-950oC или по крайней мере одного из газов, выбранного из группы, содержащей ацетилен, метан, этан, пропан, пентан, гексан, бензол и их производные при t=510-1200oС. При использовании газообразных углеводородов термообработку целесообразно проводить до уменьшения концентрации кристаллов алмаза в заготовке на не более чем 15 мас.%.

2) путем термообработки в инертной среде, например вакууме или в среде инертного газа при t=l000-1900oС.

Независимо от того, каким из указанных методов осуществлена термообработка заготовки, конечной стадией процесса является пропитка полученного полуфабриката расплавленным кремнием. Указанную пропитку осуществляют известными методами, например, путем расплавления кремния на поверхности полуфабриката, или подачей уже расплавленного кремния на поверхность полуфабриката, или погружением последнего в расплав кремния. На этой стадии происходит взаимодействие кремния с имеющимся в составе полуфабриката углеродом с образованием карбида кремния. Карбид кремния, а также не вступивший в химическое взаимодействие кремний образуют матрицу композиционного материала. Стадии термообработки и пропитки могут быть совмещены в одной печи, когда пропитка следует непосредственно после термообработки.

Содержание указанных компонентов в материале является оптимальным. Уменьшение концентрации алмаза менее 50 об. % нецелесообразно, т.к. это приводит к ухудшению теплофизических свойств. Повышение концентрации алмаза выше 85 об.% затрудняет получение материала: возникают сложности формования заготовок материала, а на стадии пропитки полуфабриката расплавленным кремнием возникают дефекты, существенно ухудшающие комплекс свойств.

Для достижения высоких теплофизических свойств материала целесообразно использовать такие исходные смеси зерен алмаза, которые обеспечили бы в конечном композите содержание зерен алмаза размером более 40 мкм не менее 25% от общего содержания алмаза в материале.

Сущность изобретения состоит в следующем. Предложенный композиционный материал включает три фазы (алмаз, карбид кремния и кремний), обладающие относительно высокой теплопроводностью, которая обеспечивается одинаковым во всех случаях фононным механизмом переноса тепла. Для обеспечения высокого уровня теплопроводности и температуропроводности в композиционном материале необходимо реализовать очень плотное сопряжение отдельных фаз и оптимальную комбинацию фаз с различной плотностью, теплоемкостью и теплопроводностью.

В предлагаемом техническом решении сопряжение отдельных фаз осуществляется за счет их химического взаимодействия. Это следует из описанного выше процесса получения материала и подтверждается исследованиями структуры материала. Тем самым удается добиться высокой скорости распространения фононов в материале и обеспечить большую длину их свободного пробега в материале. Наиболее высокие уровни теплопроводности и температуропроводности достигаются в том случае, если композиционный материал содержит более крупные алмазные зерна. Предпочтительно, если содержание крупных алмазных зерен (более 40 мкм) в материале превышает 25 об.%.

Следует заметить, что отсутствие примесей в материале положительно сказывается на его теплофизических свойствах. Поэтому при реализации процесса целесообразно использовать алмазные зерна с низким содержанием примесей (в том числе дополнительно очищенные обработкой кислотами), а также кремний высокой степени чистоты.

Следующие примеры характеризуют сущность изобретения.

Пример 1. Композиционный материал содержит в своем составе зерна алмаза - 65 об.%, карбид кремния - 28 об.%, кремний - 7 об.%. При этом 58% от общего содержания алмазных зерен составляют зерна размером 400-600 мкм, остальное - зерна менее 14 мкм. Материал имеет коэффициент теплопроводности 495 Вт/м•К, коэффициент температуропроводности - 2,65•10-4 м2/с. Плотность материала - 3,34 г/см3. Удельная теплоемкость материала - 560 Дж/кг•К.

Пример 2. Композиционный материал содержит в своем составе зерна алмаза - 75 об.%, карбид кремния - 15 об.%, кремний - 10 об.%. При этом 67% от общего содержания зерен составляют алмазные зерна размером 400-600 мкм, 24% - зерна с размером - 50-65 мкм и 9% - зерна менее 10 мкм. Материал имеет коэффициент теплопроводности - 660 Вт/м•К, коэффициент температуропроводности - 3,6•10-4 м2/с. Плотность материала - 3,35 г/см3. Удельная теплоемкость материала - 550 Дж/кг•К.

Пример 3. Композиционный материал содержит в своем составе зерна алмаза - 55 об.%, карбид кремния - 36 об.%, кремний - 9 об.%. При этом 70% от общего содержания зерен составляют алмазные зерна размером 50-65 мкм и 30% - зерна менее 14 мкм. Материал имеет коэффициент теплопроводности - 330 Вт/м•К, коэффициент температуропроводности - 1,7•10-4 м2/с. Плотность материала - 3,30 г/см3. Удельная теплоемкость материала - 580 Дж/кг•К.

Пример 4. Композиционный материал содержит в своем составе зерна алмаза 55 об.%, карбид кремния - 5%, кремний - 40%. При этом размер алмазных зерен 50-63 мкм. Материал имеет коэффициент теплопроводности - 380 Вт/м•К, плотность материала - 3,04 г/см3.

Свойства заявляемого материала определялись по следующим методикам.

1. Плотность ρ определяли гидростатическим методом.

2. Коэффициент температуропроводности (а) - методом лазерной вспышки (метод состоит в определении скорости изменения температуры тыльной стороны образца (пластины) после воздействия на его лицевую сторону короткой лазерной вспышки, метод описан в [3]).

3. Коэффициент теплопроводности рассчитывали по соотношению
λ = a•ρ•c,
где с - удельная теплоемкость материала.

Из примеров видно, что по своим теплофизическим свойствам предлагаемый материал значительно превосходит известные. Комплекс высоких свойств заявляемого материала позволяет использовать его для изготовления прецизионных приборов и устройств, особенно тех, в которых необходимы высокие теплофизические свойства.

Несомненным достоинством материала является возможность получения из него изделий объемом более 10 мм3 заданной формы, требующих минимальной механической обработки, что связано с особенностями технологии изготовления данного материала.

Следует отметить, что полученный материал отличается высокой твердостью и износостойкостью и может быть использован в условиях интенсивного абразивного износа.

Источники, использованные при составлении описания
1. Патент США 5783316, кл. В 23 К 031/02, 1998.

2. Патент РФ 2151126, кл. С 04 В 35/52, 2000.

3. A. Cezairliyan et al. High temperature Laser-Pulse Thermal Diffusivity Apparatus, International Journal of Thermophysics, V.15, #2, 1994, р. 317-341.

Похожие патенты RU2206502C2

название год авторы номер документа
КОНСТРУКЦИОННЫЙ МАТЕРИАЛ 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2151126C1
СПОСОБ ПОЛУЧЕНИЯ АБРАЗИВНОГО ИЗДЕЛИЯ И АБРАЗИВНОЕ ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ЭТИМ МЕТОДОМ 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2147508C1
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗОСОДЕРЖАЩЕГО МАТЕРИАЛА 1998
  • Гордеев С.К.
RU2147982C1
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗОСОДЕРЖАЩЕГО МАТЕРИАЛА И МАТЕРИАЛ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 1999
  • Гордеев С.К.
RU2151814C1
СПОСОБ ПОЛУЧЕНИЯ АБРАЗИВНЫХ ЗЕРЕН 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2132268C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ИЗДЕЛИЯ 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2131805C1
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКОГО КОМПОЗИЦИОННОГО КАРБИДОСОДЕРЖАЩЕГО ИЗДЕЛИЯ 1999
  • Гордеев С.К.
  • Денисов Л.Ю.
RU2173307C2
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКОГО КОМПОЗИЦИОННОГО ИЗДЕЛИЯ 1997
  • Гордеев С.К.
  • Жуков С.Г.
  • Бирюков А.В.
  • Морозов В.В.
RU2130441C1
ПОЛЕВОЙ ЭМИТТЕР ЭЛЕКТРОНОВ 1998
  • Гордеев С.К.
  • Косарев А.И.
  • Андронов А.Н.
  • Виноградов А.Я.
RU2149477C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СВЕРХТВЕРДЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 1994
  • Белиев М.М.
  • Кеда А.М.
  • Михалев В.П.
  • Салтыков В.А.
  • Нуждин Г.А.
RU2098388C1

Реферат патента 2003 года КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Изобретение предназначено для химической промышленности и может быть использовано при изготовлении теплоотводов, теплообменников. Композиционный материал содержит, об. %: зерна алмаза - 50-85; кремний - 2-49; карбид кремния - 1-48. Матрица материала состоит из карбида кремния и кремния. Содержание зерен алмаза размером более 40 мкм - не менее 25% от общего содержания алмаза в материале. Композиционный материал имеет коэффициент теплопроводности при комнатной температуре более 300 Вт/м•К, коэффициент температуропроводности - не менее 1,6•10-4 м2/с. Материал также отличается высокой твердостью и износостойкостью. Из него можно изготовить изделия заданной формы объемом более 10 мм3, не требующие дополнительной механической обработки.

Формула изобретения RU 2 206 502 C2

Композиционный материал с высокой теплопроводностью, содержащий алмазные зерна в матрице из карбида кремния и кремния, отличающийся тем, что он содержит указанные компоненты в следующем соотношении, об.%:
Зерна алмаза - 50 - 85
Кремний - 2 - 49
Карбид кремния - 1 - 48
при этом содержание зерен алмаза размером более 40 мкм составляет не менее 25% от общего содержания алмаза в материале.

Документы, цитированные в отчете о поиске Патент 2003 года RU2206502C2

КОНСТРУКЦИОННЫЙ МАТЕРИАЛ 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2151126C1
СПОСОБ ПОЛУЧЕНИЯ АБРАЗИВНЫХ ЗЕРЕН 1997
  • Гордеев С.К.(Ru)
  • Жуков С.Г.(Ru)
  • Данчукова Л.В.(Ru)
  • Томми Экстрем
RU2132268C1
ХИМИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ/Под ред
И.Л
Кнунянца
- М.: Советская энциклопедия, 1988, т.1, с.106, т.2, с
Способ выделения сульфокислот из нефтяных масел 1913
  • Петров Г.С.
SU508A1
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗОСОДЕРЖАЩЕГО МАТЕРИАЛА 1998
  • Гордеев С.К.
RU2147982C1
US 5010043 А, 23.04.1991.

RU 2 206 502 C2

Авторы

Гордеев С.К.

Данчукова Л.В.

Экстрем Томми

Клоуб Каузер

Даты

2003-06-20Публикация

2000-11-21Подача