Изобретение относится к области обработки металлов давлением, в частности к способам изготовления промежуточных заготовок из титановых сплавов методом горячей деформации.
Известен способ производства промежуточных заготовок из сплавов титана, включающий выплавку слитков, нагрев в рекуперативных нагревательных колодцах, прокатку слитков в блюм, прокатку блюма в круг на крупносортном прокатном стане и окончательную прокатку прутка на готовый размер на сортовом прокатном стане (Титановые сплавы. Полуфабрикаты из титановых сплавов. Александров В.К., Аношкин Н.Ф., Белозеров А.П. и др. - М.: ВИЛС, 1996, с.177-179 [1]).
Известный способ позволяет получать промежуточную заготовку из сплавов титана на прокатных станах без использования специализированного оборудования.
Недостатком известного способа является невозможность получения требуемой структуры в промежуточной заготовке вследствие того, что деформация металла на всех переходах происходит в β-области. Кроме того, недостатком данного способа является большая потеря металла из-за значительной разнотолщинности на концах прутков ([1], с.187).
Известен способ изготовления промежуточных заготовок из титановых сплавов прессованием (см. [1], с.176).
Недостатком этого процесса являются большие потери металла в виде пресс-остатка и дефектов утяжинного конца. Кроме того, экструдирование заготовок из слитка невозможно в (α+β)-области из-за больших давлений и высоких усилий прессования, а прессование в β-области не позволяет формировать требуемую структуру заготовки.
Наиболее близким по технической сущности аналогом к заявляемому изобретению является способ изготовления промежуточной заготовки из α- и (α+β)-титановых сплавов, включающий ковку слитка в пруток в несколько переходов при температурах β-области, промежуточную ковку при температурах β- и (α+β)-области, окончательное деформирование в (α+β)-области и механическую обработку (см. [1], с.184-189) - прототип.
Недостатком прототипа является структурная неоднородность вследствие захолаживания металла в процессе ковки, неравномерности деформации и наличия зон затрудненной деформации. Кроме того, недостатком является большое число нагревов, особенно при ковке в (α+β)-области на последних переходах, т.к. разовый уков в (α+β)-области ограничен пластичностью металла и быстрым охлаждением металла.
Задачей, на решение которой направлено данное изобретение, является получение регламентированной мелкодисперсной микроструктуры как по сечению, так и по длине изготавливаемой заготовки, а также повышение рентабельности способа путем замены многопереходной ковки в (α+β)-области операцией прессования и снижение потерь металла.
Техническим результатом, достигаемым при осуществлении заявляемого изобретения, является получение заготовки с равномерной регламентированной микроструктурой, сокращение количества нагревов и связанного с этим угара металла, снижение трудоемкости процесса изготовления заготовки и снижение потерь металла при механической обработке.
Указанный технический результат достигается тем, что в известном способе изготовления промежуточной заготовки из α- и (α+β)-титановых сплавов, включающем ковку слитка в пруток за несколько переходов при температуре β-области, промежуточную ковку за несколько переходов при температуре β- и (α+β)-области, окончательное деформирование при температуре (α+β)-области и механическую обработку, согласно изобретению промежуточную ковку в (α+β)-области осуществляют с величиной укова 1,25-1,75, причем на ее окончательных переходах ковку проводят с уковом 1,25-1,35 в пруток диаметром Дп, который определяют по выражению:
где Дп - диаметр прутка, мм;
dпз - диаметр промежуточной заготовки, мм;
[Δt]- допустимое приращение температур в процессе прессования;
с - удельная теплоемкость сплава, КДж/кг;
ρ - плотность деформируемого металла, кг/м3;
δ - припуск на механическую обработку, мм;
σ - сопротивление деформации, МПа;
а окончательное деформирование выполняют путем прессования при температуре Т, которую определяют по выражению:
,
где Т - температура металла при прессовании, oС;
Тпп - температура полиморфного превращения, oС;
ln μ - натуральный логарифм истинной вытяжки при прессовании;
σ1 - сопротивление деформации с учетом скорости и температуры деформации, МПа;
кроме того, перед окончательным деформированием выполняют механическую обработку прутка, резку его на заготовки и формирование торцев.
Сущность предлагаемого изобретения заключается в следующем.
Ковка слитка в пруток при температуре β-области на первых проходах разрушает литую структуру. Первая ковка в (α+β)-области с уковом 1,25-1,35 разрушает большеугловые границы зерен и последующий нагрев с деформацией в β-области сопровождается рекристаллизацией с измельчением зерна. Окончательное деформирование прутка в (α+β)-области переводит структуру металла в (α+β)-деформированную и при укове 1,25-1,35 приводит к разрушению большеугловых границ β-зерен и равномерной структуре по всему сечению, повышает пластичность металла. Замена операции ковки в (α+β)-области операцией прессования снижает количество нагревов и трудоемкость.
За счет того что механическую обработку промежуточного прутка производят на большем диаметре при той же минимальной величине съема, снижаются потери металла в стружку и трудоемкость.
За счет того что окончательное деформирование в (α+β)-области производят прессованием со значительной вытяжкой, происходит измельчение зерна и формирование оптимальной макро- и микроструктуры по всему сечению промежуточной заготовки и по ее длине, при этом сокращается в 4-5 раз количество нагревов и трудоемкость по сравнению с известным способом. За счет того, что промежуточный пруток куется на регламентированный диаметр, при последующем прессовании с регламентированной температурой нагрева в (α+β)-области исключается деформационный перегрев металла.
Пример реализации способа.
Слиток диаметром 740 мм из титанового сплава Ti-6Al-4V с температурой полиморфного превращения Тпп=990oС за несколько переходов отковали в пруток диаметром 282 мм, причем последний переход при получении промежуточного прутка осуществляли при температуре 950oС (в α+β-области). Диаметр промежуточного кованого прутка определили по формуле (1):
Полученный кованый пруток обточили на диаметр 275 мм, разрезали на кратные заготовки длиной 750 мм, выполнили фаски и произвели нагрев до температуры 941oС (α+β-область), которую определили по формуле (2):
где ln 3,04 - натуральный логарифм истинной вытяжки с учетом распрессовки металла в контейнере при прессовании и фактических размеров матрицы. В завершение способа провели прессование нагретого кованого прутка в промежуточную заготовку диаметром 159 мм.
По заявленному способу потери металла при обточке прутка диаметром 282 мм на диаметр 275 мм составили 4,9%. Кроме того, устраняются 4 нагрева и 4 перехода операции ковки на диаметр 170 мм.
По существующей технологии производится ковка прутка на диаметр 170 мм и обточка его на окончательный диаметр 159 мм. При этом потери металла составляют 12,5%.
Таким образом, достижение технического результата - получение мелкодисперсной равномерной по сечению и по длине заготовки микроструктуры, снижение количества нагревов, трудоемкости и потерь металла - обеспечивается только при неразрывном выполнении всех существенных признаков заявляемого способа.
Кроме того, заявленный способ обладает дополнительным преимуществом перед известными - разгружается головное оборудование металлургического производства.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ КОВАНОЙ ЗАГОТОВКИ В ВИДЕ ПРУТКА ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ | 2021 |
|
RU2758735C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНОЙ ЗАГОТОВКИ ИЗ α- ИЛИ α+β-ТИТАНОВЫХ СПЛАВОВ | 2005 |
|
RU2314362C2 |
СПОСОБ ПОЛУЧЕНИЯ КОВАНОЙ ЗАГОТОВКИ В ВИДЕ ПРУТКА ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ | 2021 |
|
RU2758737C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОВАНОЙ ЗАГОТОВКИ В ВИДЕ ПРУТКА ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ | 2021 |
|
RU2758044C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ В ВИДЕ ПРУТКА ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ | 2021 |
|
RU2758045C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОМЕЖУТОЧНЫХ ЗАГОТОВОК ИЗ (α+β)-ТИТАНОВЫХ СПЛАВОВ | 2011 |
|
RU2468882C1 |
Способ изготовления прутков из сплавов на основе титана | 2015 |
|
RU2644714C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОЙ ТРУБНОЙ ЗАГОТОВКИ ДЛЯ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ ПСЕВДО α И (α+β) ТИТАНОВЫХ СПЛАВОВ | 1998 |
|
RU2127160C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V | 2014 |
|
RU2583566C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ С МЕЛКОКРИСТАЛЛИЧЕСКОЙ ГЛОБУЛЯРНОЙ СТРУКТУРОЙ В α И α+β-ТИТАНОВЫХ СПЛАВАХ | 2009 |
|
RU2390395C1 |
Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении промежуточных заготовок из титановых сплавов методом горячего деформирования. Производят ковку слитка в пруток за несколько переходов при температуре β-области и промежуточную ковку за несколько переходов при температуре β и (α+β)-области. Промежуточную ковку при температуре (α+β)-области осуществляют с величиной укова 1,25-1,75. На окончательных переходах указанную промежуточную ковку ведут с уковом 1,25-1,35 в пруток, диаметр которого выбирают из приведенного выражения. Затем производят механическую обработку прутка, резку его на заготовки и формирование торцов, после чего осуществляют окончательное деформирование прессованием при температуре (α+β)-области. Температуру прессования определяют из приведенной зависимости. В результате обеспечивается получение мелкодисперсной равномерной микроструктуры заготовки, снижение трудоемкости ее изготовления и потерь металла.
Способ изготовления промежуточной заготовки из α- и (α+β)-титановых сплавов, включающий ковку слитка в пруток за несколько переходов при температуре β-области, промежуточную ковку за несколько переходов при температуре β- и (α+β)-области, окончательное деформирование при температуре (α+β)-области и механическую обработку, отличающийся тем, что промежуточную ковку при температуре (α+β)-области осуществляют с величиной укова 1,25-1,75, причем на ее окончательных переходах промежуточную ковку проводят с уковом 1,25-1,35 в пруток диаметром, величину которого определяют из следующего выражения:
где Дп – диаметр прутка, мм;
dпз – диаметр промежуточной заготовки, мм;
[Δt] – допустимое приращение температур в процессе прессования;
с – удельная теплоемкость сплава, КДж/кг;
ρ – плотность деформируемого металла, кг/м3,
δ - припуск на механическую обработку, мм;
σ – сопротивление деформации, МПа,
механическую обработку прутка производят перед окончательным деформированием, которое осуществляют прессованием при температуре (α+β)-области, которую определяют из выражения:
где Т – температура металла при прессовании, °С;
Tпп – температура полиморфного превращения, °С;
lnμ – натуральный логарифм истинной вытяжки при прессовании;
σ1 – сопротивление деформации с учетом скорости и температуры деформации, МПа,
при этом перед окончательным прессованием производят резку прутка на заготовки и формирование их торцев.
АЛЕКСАНДРОВ В.К | |||
и др | |||
Титановые сплавы | |||
Полуфабрикаты из титановых сплавов | |||
- М.: ВИЛС, 1996, с.184-189 | |||
RU 2003417 C1, 30.11.1993 | |||
СПОСОБ КОВКИ ТЕХНИЧЕСКИ ЧИСТОГО ТИТАНА | 0 |
|
SU207679A1 |
US 3645124, 29.02.1972. |
Авторы
Даты
2003-11-27—Публикация
2002-04-04—Подача