Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах до 1000oС, методами направленной кристаллизации и монокристаллического литья.
Известен монокристаллический сплав на основе никеля, содержащий следующий компоненты, мас.%: хром 2,2-5,5, алюминий 5,0-6,2, титан 0,7-1,5, молибден 1,0-4,0, вольфрам 10,5-13,0, тантал 0,01-4,5, рений 1,0-2,6, кобальт 5,0-9,5, ниобий 0,7-1,5, иттрий 0,002-0,075, лантан 0,001-0,05, церий 0,001-0,05, празеодим 0,0002-0,01, неодим 0,0002-0,005, гадолиний 0,0002-0,005, скандий 0,0002-0,005, никель остальное - (1). Сплав обладает достаточно высоким уровнем длительной прочности и стабилен при работе в условиях высоких температур, однако его недостатком является легирование дорогими и дефицитными элементами, прежде всего рением, а также празеодимом, неодимом и гадолинием.
Задачей изобретения является создание экономного литейного жаропрочного сплава на основе никеля на базе реализации принципов структурной стабильности за счет исключения из состава наиболее дорогих и дефицитных элементов и установление определенного баланса содержания остальных легирующих элементов.
Задача решается тем, что предложен жаропрочный литейный сплав на основе никеля, содержащий хром, алюминий, титан, молибден, вольфрам, тантал, кобальт, ниобий, иттрий, лантан, церий, при этом он содержит компоненты в следующем соотношении, мас.%: хром 1,0-4,0, алюминий 5,0-7,0, титан <2,0, молибден ≤4,0, вольфрам 12,0-16,0, тантал 4,0-10,0, кобальт 10,0-14,0, ниобий ≤2,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, никель остальное, при этом соблюдены следующие условия: суммарное содержание вольфрама и тантала в мас.% находится в пределах 18,0≤W+Ta≤24,0, а суммарное содержание в мас.% хрома, вольфрама, тантала, молибдена и ниобия не превышает 26,0.
В заявленном составе сплава увеличено количество тантала и/или вольфрама, чтобы компенсировать полезное влияние на структуру и свойства исключенного из состава рения. Кроме того, из заявленного состава сплава полностью исключены празеодим, неодим, гадолиний и бор и проведена балансировка содержания остальных легирующих элементов.
Химический состав предлагаемого сплава детально анализировался методом интеллектуальной инженерии, при этом оценивались: прогнозируемый уровень структурной стабильности, а именно вероятность образования топологически плотноупакованных и карбидных фаз; формирование эвтектических колоний (γ+γ′) фаз и фаз с объемно-центрированной кубической (ОЦК) решеткой при длительной наработке; кинетика диффузионного огрубления изолированных выделений γ′-фазы в γ-фазе (матрице) и пластинчатой микроструктуры в монокристаллах с ориентацией [001].
В результате проведенного анализа было установлено, что в составе предложенного сплава вероятность образования нежелательных фаз мала и сам состав хорошо сбалансирован.
Данные аналитического прогнозирования структурной стабильности были проверены экспериментально и сопоставлены с характеристиками длительной прочности известного сплава (1).
Пример.
Для опробации сплава были выплавлены три состава, содержащие компоненты в мас.%, представленные в табл. 1. Предлагаемый сплав выплавляли в вакуумной индукционной печи, а затем переплавляли в печи для направленной кристаллизации с применением затравок с заданной ориентацией. Свойства полученных сплавов приведены в табл. 2.
Как видно из табл. 2, единица веса известного сплава (1) более чем на 20% дороже предлагаемого сплава. При этом в сравнении с известным сплавом (1), у которого при нагрузке σ=255 МПа среднее время до разрушения составляет 100 часов, уровень длительной прочности предложенного сплава даже выше, чем у известного сплава (1).
В монокристаллах предложенного сплава после нагрева выше температуры полного растворения упрочняющей γ′-фазы, выдержки и охлаждения со скоростью 50oС/мин наблюдается регулярная микроструктура, представляющая собой закономерное распределение кубоидных частиц γ′-фазы в матрице. При испытании образцов с ориентацией [001] на долговечность в них происходит морфологическое превращение - изолированные частицы γ′-фазы превращаются в тонкие пластины, разделенные слоями матрицы. Сформировавшаяся пластинчатая микроструктура ("рафт-структура") обладает высокой стабильностью. Даже после длительной выдержки при температуре 1000oС под нагрузкой в образцах предложенного сплава не наблюдается существенного изменения исходного фазового состава.
Предложенный сплав ниже по стоимости известного сплава (1) более чем на 20% в зависимости от выбора конкретных композиций легирующих элементов в заявленных диапазонах концентраций. В предложенном составе отсутствует остродефицитный рений, что обеспечивает возможность производства предложенного сплава в необходимом количестве.
Источники информации
1. Патент RU 1513934, МКИ6 C 22 C 19/05, 1995 г.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2010 |
|
RU2439185C1 |
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ (ВАРИАНТЫ) | 2007 |
|
RU2348725C2 |
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) | 2007 |
|
RU2353691C2 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2525883C1 |
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2015 |
|
RU2626118C2 |
НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА | 2000 |
|
RU2186144C1 |
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ СПЛАВ С ПОВЫШЕННОЙ ЖАРОПРОЧНОСТЬЮ И СТОЙКОСТЬЮ К СУЛЬФИДНОЙ КОРРОЗИИ | 2015 |
|
RU2623940C2 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2524515C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ ДЕТАЛЕЙ ГОРЯЧЕГО ТРАКТА ГАЗОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2519075C1 |
ЖАРОПРОЧНЫЙ ГРАНУЛИРОВАННЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2008 |
|
RU2386714C1 |
Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, используемым для изготовления высоконагруженных деталей, например лопаток газовых турбин, работающих при температурах до 1000oС, методами направленной кристаллизации и монокристаллического литья. Предложен жаропрочный литейный сплав на основе никеля, содержащий хром, алюминий, титан, молибден, вольфрам, тантал, кобальт, ниобий, иттрий, лантан, церий, отличающийся тем, что он содержит компоненты в следующем соотношении, мас.%: хром 1,0-4,0, алюминий 5,0-7,0, титан <2,0, молибден ≤4,0, вольфрам 12,0-16,0, тантал 4,0-10,0, кобальт 10,0-14,0, ниобий ≤2,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, никель остальное, при этом соблюдены следующие условия: суммарное содержание вольфрама и тантала, в мас.%, находится в пределах: 18,0≤W+Та≤24,0, а суммарное содержание, в мас.%, хрома, вольфрама, тантала, молибдена и ниобия не превышает 26,0. Изобретение позволяет снизить стоимость сплава за счет исключения из его состава дорогого и дефицитного рения и проведения балансировки содержания остальных легирующих элементов. 2 табл.
Жаропрочный литейный сплав на основе никеля, содержащий хром, алюминий, титан, молибден, вольфрам, тантал, кобальт, ниобий, иттрий, лантан, церий, отличающийся тем, что он содержит компоненты в следующем соотношении, мас.%:
Хром 1,0-4,0
Алюминий 5,0-7,0
Титан <2,0
Молибден ≤4,0
Вольфрам 12,0-16,0
Тантал 4,0-10,0
Кобальт 10,0-14,0
Ниобий ≤2,0
Иттрий 0,003-0,1
Лантан 0,001-0,1
Церий 0,003-0,1
Никель Остальное
при этом соблюдены следующие условия: суммарное содержание вольфрама и тантала в мас.% находится в пределах: 18,0≤W+Та≤24,0, а суммарное содержание в мас.% хрома, вольфрама, тантала, молибдена и ниобия не превышает 26,0.
МОНОКРИСТАЛЛИЧЕСКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 1988 |
|
RU1513934C |
Сплав на основе никеля | 1978 |
|
SU660408A1 |
US 4209348, 24.06.1980 | |||
US 3904403, 09.09.1975 | |||
Распределитель импульсов | 1975 |
|
SU563720A1 |
Авторы
Даты
2003-12-20—Публикация
2002-08-29—Подача