ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ Российский патент 2017 года по МПК C22C19/05 

Описание патента на изобретение RU2626118C2

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и монокристальной структурой, работающих при температурах 1000°C и выше.

Развитие жаропрочных никелевых сплавов с монокристаллической структурой, используемых для изготовления рабочих и сопловых лопаток газовых турбин, является ведущим направлением, обеспечивающим значительное повышение параметров и надежности современных газотурбинных двигателей.

Достигнутое увеличение жаропрочных свойств обеспечивается за счет совершенствования теории легирования, в том числе внедрения в составы сплавов таких сравнительно новых элементов, как Та и Re. Эти элементы, обладая высокой температурой плавления и низкой диффузионной подвижностью обеспечивают:

- заметное повышение прочности межатомных связей;

- существенное повышение сопротивления деформации ползучести и возникновению устойчивых трещин;

- значительное улучшение структурной стабильности.

Первый отечественный сплав этой группы ЖС32 (ρ=8,76 г/см3, ), содержащий 4% рения (Re) и 4% тантала (Та), не имевший на тот период аналогов ни в РФ, ни за рубежом, за сравнительно короткое время нашел широкое применение во многих газотурбинных двигателях IV поколения и сегодня является одним из наиболее востребованных материалов.

Однако использование этого сплава связано одновременно с серьезной проблемой - существенно выросшей в последние десятилетия стоимостью рения, которая достигла в настоящее время 5-8 103 USD/кг, в результате этот сплав оказался весьма дорогим, что существенно сузило возможности его применения. Стоимость шихты этого сплава в настоящий период составляет 17,8 млн. руб./т, в то время как стоимость легирующих элементов сплава предыдущего поколения ЖС6У, не содержащего рений, равна 2,2 млн. руб./т, то есть в 8 раз меньше.

Известен литейный жаропрочный сплав на основе никеля, предназначенный для литья деталей методом направленной кристаллизации, имеющий следующий состав, мас.%:

углерод 0,08-0,2 хром 4,0-6,0 кобальт 8,0-10,0 вольфрам 7,0-10,0 молибден 0,5-2,0 алюминий 5,0-7,0 рений 3,0-5,0 тантал 3,0-5,0 бор 0,005-0,03 ванадий 0,01-0,15 церий 0,001-0,04 иттрий 0,003-0,04 лантан 0,001-0,1 кремний 0,01-0,2 кислород 0,0001-0,002 азот 0,0001-0,002 никель остальное

(описание к патенту РФ на изобретение №2365656, МПК C22C 19/05, опубл. 27.08.2009 г.).

Сплав предназначен для литья рабочих и сопловых лопаток газотурбинных двигателей и установок с направленной столбчатой и монокристалльной структурами. Сплав имеет достаточно высокий уровень жаропрочности, удельный вес сплава равен 8,84 г/см3.

Вместе с тем стоимость его шихты является весьма высокой, что серьезно снижает объемы практического применения этого сплава.

Известен литейный жаропрочный сплав на основе никеля для литья лопаток с монокристаллической структурой, имеющий следующий средний состав, мас.%:

хром 6,0 кобальт 10,0 молибден 0,6 тантал 9,0 вольфрам 9,0 алюминий 5,7 титан 0,8 гафний 0,2 никель остальное

(Жаклин В. Вах, Кен Харри «Новые монокристаллические жаропрочные сплавы CMSX-7 и CMSX-8», компания Cannon-Muskegon, «Superalloys 2012», TMS-2012, p.p. 179-188, под ред. Эрика С. Хайрона и др.).

Сплав не содержит рения, однако уровень его жаропрочности является недостаточно высоким - . Удельный вес сплава составляет 8,8 г/см3.

Наиболее близким аналогом, взятым за прототип, является литейный жаропрочный сплав на основе никеля, имеющий следующий химический состав, мас.%:

хром 5,0-8,0 кобальт 9,0-12,0 вольфрам 14,0-16,0 алюминий 4,0-6,0 тантал 6,0-10,0 углерод 0,002-0,1 иттрий 0,001-0,1 лантан 0,001-0,1 церий 0,001-0,1 кремний 0,01-0,3 магний 0,01-0,15 марганец 0,01-0,3 никель остальное

(описание к патенту РФ на изобретение №2439185, МПК C22C 19/05, опубл. 10.01.2012).

Сплав предназначен для литья рабочих и сопловых лопаток газотурбинных двигателей и установок с направленной столбчатой и монокристалльной структурами. Сплав обладает наиболее высоким среди всех известных аналогов, не содержащих рений, уровнем жаропрочности . Однако он отличается и весьма большим удельным весом (γ=9,03 г/см3), что также затрудняет его практическое использование.

Задачей изобретения является снижение удельного веса жаропрочного никелевого сплава до уровня (8,84-8,87) г/см3 при сохранении высокой жаропрочности, соответствующей широко применяемому сплаву ЖС 32 ВИ .

Техническим результатом изобретения является снижение удельного веса сплава при сохранении высокого уровня жаропрочности.

Технический результат достигается тем, что литейный жаропрочный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, углерод, иттрий, лантан, церий, кремний, марганец, в отличие от известного, дополнительно содержит молибден, гафний, бор и скандий при следующем соотношении компонентов, мас.%:

хром 4,0-9,0 кобальт 9,0-14,0 вольфрам 7,0-10,0 молибден 1,0-5,0 алюминий 4,0-6,0 тантал 6,0-10,0 гафний 0,1-1,0 углерод 0,002-0,1 иттрий 0,001-0,1 лантан 0,001-0,1 церий 0,001-0,1 кремний 0,01-0,2 марганец 0,01-0,3 бор 0,005-0,03 скандий 0,0002-0,01 никель остальное

В заявленном сплаве снижено содержание тяжелого вольфрама с (14,0-16,0) мас.% до (7,0-10,0) мас.%. Вольфрам является одним из элементов, которые оказывают значительное положительное влияние на высокотемпературные прочностные свойства никелевых сплавов. Поэтому снижение его концентрации в сплаве было в определенной мере компенсировано введением в его состав молибдена в количестве (1,0-4,0) мас.%, который также положительно влияет на жаропрочность, но его удельный вес в ≈ 1,9 раза меньше, чем вольфрама.

С этой же целью одновременно в состав сплава был введен гафний, который также эффективно повышает жаропрочность, совершенствует (γ-γ') структуру и при этом его удельный вес в ≈ 1,4 раза ниже, чем удельный вес вольфрама.

Кроме того, с целью улучшения образования более дисперсных выделений частиц упрочняющей γ-фазы совершенствования (γ-γ') упрочнения в сплаве за счет улучшения состояния межфазных границ осуществленного дополнительным легированием бором и скандием.

Введение бора образует бориды, которые располагаются по дефектным местам кристаллических решеток, тем самым ограничивая их рост, и улучшая сопротивление ползучести.

При этом скандий оказывает накопительное влияние на жаростойкость и рафинирует металл, связывая серу, фосфор и другие вредные примеси в тугоплавкие мелкодисперсные частицы, которые становятся дополнительными упрочняющими сплав соединениями.

Увеличение хрома и кобальта позволяет увеличить сопротивление росту усталостной трещины, повысить жаростойкость и коррозионную стойкость, а также дополнительно упрочнить твердый раствор.

Пример осуществления.

Для апробации сплава были выплавлены три опытных состава сплава, содержание компонентов которых приведено в таблице 1.

Сплав выплавляли в вакуумной индукционной печи ВИП-0-10 Лейболд Хереце, мощностью 50 кВт, в вакууме 10-3 торр.

Переплав полученной шихтовой заготовки с целью реализации монокристальной структуры осуществлялся на установке ВИЛ НК мощностью 450 кВт, емкостью тигля 10 кг в вакууме ~ 10-3 торр с применением затравок заданной ориентации. Выплавляемые образцы после травления подвергались контролю с целью отбраковки монокристаллов от паразитных зерен, а также рентген-контролю с целью определения кристаллической ориентации. На испытания механических характеристик передавались образцы с отклонениями кристаллов от продольной оси не более ±6°.

Результаты испытаний механических характеристик известного сплава ЖС32ВИ и предлагаемого сплава и их удельный вес приведены в таблице 2.

Как видно из таблицы, предлагаемый сплав по уровню прочности при 20°C соответствует серийному сплаву ЖС32ВИ (Энциклопедия «Машиностроение», разд. II, том II-3. М.: Машиностроение, 2001, с. 545) и несколько уступает по этому показателю прототипу. Однако новый сплав превосходит ЖС32ВИ (примерно на 17%) и прототип (приблизительно на 9%) по значению предела текучести. Пластичные характеристики предлагаемого сплава несколько ниже, однако, они вполне достаточны для обеспечения надежной работы конструкций и соответствуют прототипу.

По уровню длительной прочности и удельному весу предлагаемый сплав соответствует серийному материалу ЖС32ВИ. При этом стоимость шихты предлагаемого сплава составляет 7,5 млн. руб./т, в то время как цена шихты сплава ЖС32ВИ, обладающего таким же уровнем работоспособности, равна 17,8 млн. руб./т, то есть выше в 2,4 раза.

Несмотря на то, что предлагаемый сплав уступает прототипу по уровню длительной прочности, он имеет меньший удельный вес, благодаря чему изготовленные из него лопатки турбин имеют меньшую массу и испытывают меньшие нагрузки, обусловленные центробежными силами. Предлагаемый сплав имеет оптимальную структуру: дисперсные кубические выделения γ'-фазы размером (0,35-0,45) мкм, незначительное количество эвтектической фазы, отличается отсутствием охрупчивающих ТПУ-фаз и α-фаз на основе вольфрама, молибдена, рения и хрома. Его структурная стабильность (определяемая температурами начала TНрγ' и полного Тпр растворения γ'-фазы) несколько лучше, чем у сплава ЖС32ВИ. Сравнительные термодинамические параметры предлагаемого сплава и сплава ЖС32ВИ приведены в таблице 3.

Изобретение обеспечивает высокий уровень жаропрочности сплава при одновременно существенном снижении стоимости его шихтовых материалов и дефицитности за счет отсутствия в его составе крайне дорогого и остродефицитного рения.

Похожие патенты RU2626118C2

название год авторы номер документа
Литейный жаропрочный никелевый сплав с монокристальной структурой для лопаток газотурбинных двигателей 2024
  • Данилов Денис Викторович
  • Логунов Александр Вячеславович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Шмотин Юрий Николаевич
RU2821248C1
Литейный жаропрочный никелевый сплав с монокристаллической структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2769330C1
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2019
  • Храмин Роман Владимирович
  • Буров Максим Николаевич
  • Логунов Александр Вячеславович
  • Данилов Денис Викторович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Мухтаров Шамиль Хамзаевич
  • Мулюков Радик Рафикович
RU2695097C1
ЛИТЕЙНЫЙ НИКЕЛЕВЫЙ СПЛАВ С РАВНООСНОЙ СТРУКТУРОЙ 2015
  • Шмотин Юрий Николаевич
  • Логунов Александр Вячеславович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Данилов Денис Викторович
  • Хрящев Илья Игоревич
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Семин Александр Евгеньевич
RU2685455C2
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
RU2353691C2
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2010
  • Логунов Александр Вячеславович
  • Кузменко Михаил Леонидович
  • Шмотин Юрий Николаевич
  • Гришихин Сергей Александрович
RU2439185C1
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2008
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
  • Кузменко Михаил Леонидович
  • Шмотин Юрий Николаевич
  • Гришихин Сергей Александрович
RU2383642C1
Жаропрочный никелевый сплав 2019
  • Данилов Денис Викторович
  • Логунов Александр Вячеславович
RU2697674C1
Литейный жаропрочный никелевый сплав с монокристальной структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2768946C1
НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2000
  • Толораия В.Н.
  • Орехов Н.Г.
  • Каблов Е.Н.
  • Чубарова Е.Н.
RU2186144C1

Реферат патента 2017 года ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и монокристальной структурой, работающих при температурах 1000°C и выше. Литейный жаропрочный сплав на основе никеля содержит, мас.%: хром 4,0-9,0; кобальт 9,0-14,0; вольфрам 7,0-10,0; молибден 1,0-5,0; алюминий 4,0-6,0; тантал 6,0-10,0; гафний 0,1-1,0; углерод 0,002-0,1; иттрий 0,001-0,1; лантан 0,001-0,1; церий 0,001-0,1; кремний 0,01-0,2; марганец 0,01-0,3; бор 0,005-0,03; скандий 0,0002-0,01; никель остальное. Снижается удельный вес сплава при сохранении высокого уровня жаропрочности. 3 табл., 1 пр.

Формула изобретения RU 2 626 118 C2

Литейный жаропрочный сплав на основе никеля, содержащий хром, кобальт, вольфрам, алюминий, тантал, углерод, иттрий, лантан, церий, кремний и марганец, отличающийся тем, что он дополнительно содержит молибден, гафний, бор и скандий при следующем соотношении компонентов, мас.%:

хром 4,0-9,0 кобальт 9,0-14,0 вольфрам 7,0-10,0 молибден 1,0-5,0 алюминий 4,0-6,0 тантал 6,0-10,0 гафний 0,1-1,0 углерод 0,002-0,1 иттрий 0,001-0,1 лантан 0,001-0,1 церий 0,001-0,1 кремний 0,01-0,2 марганец 0,01-0,3 бор 0,005-0,03 скандий 0,0002-0,01 никель остальное

Документы, цитированные в отчете о поиске Патент 2017 года RU2626118C2

ЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ, ОБЛАДАЮЩИЙ ВЫСОКИМ СОПРОТИВЛЕНИЕМ К СУЛЬФИДНОЙ КОРРОЗИИ В СОЧЕТАНИИ С ВЫСОКОЙ ЖАРОПРОЧНОСТЬЮ 2013
  • Шмотин Юрий Николаевич
  • Старков Роман Юрьевич
  • Лещенко Игорь Алексеевич
  • Данилов Денис Викторович
  • Цатурян Эдуард Ованесович
  • Логунов Александр Вячеславович
  • Захаров Юрий Никитович
RU2520934C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК 2013
  • Лубенец Владиир Платонович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Кац Эдуард Лейбович
  • Кульмизев Александр Евгеньевич
  • Яковлев Евгений Игоревич
RU2525883C1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
CN 101528959 B, 10.10.2012.

RU 2 626 118 C2

Авторы

Шмотин Юрий Николаевич

Логунов Александр Вячеславович

Лещенко Игорь Алексеевич

Заводов Сергей Александрович

Данилов Денис Викторович

Хрящев Илья Игоревич

Михайлов Александр Михайлович

Михайлов Михаил Александрович

Семин Александр Евгеньевич

Даты

2017-07-21Публикация

2015-09-17Подача