ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО Российский патент 2004 года по МПК C22C21/16 C22C21/14 

Описание патента на изобретение RU2222628C1

Предлагаемое изобретение относится к области металлургии, в частности к жаропрочным деформируемым сплавам на основе алюминия системы Аl-Сu-Мn, используемым в качестве конструкционного материала в греющихся частях летательных аппаратов, например в деталях двигателя или в элементах деталей обшивки сверхзвуковых самолетов.

Известен жаропрочный деформируемый сплав марки Д21 на основе алюминия системы Al-Cu-Мn, содержащий, мас.%:
Медь - 6,0-7,0
Марганец - 0,4-0,8
Магний - 0,25-0,45
Титан - 0,1-0,2
Железо - до 0,3
Кремний - до 0,3
Алюминий - Остальное
/ОСТ 190048/.

Сплав рекомендовано использовать для основных нагруженных деталей планера самолета, подвергающихся эксплуатационному нагреву до температуры 175oС.

Недостатком этого сплава является низкая длительная прочность и невысокие характеристики трещиностойкости, что не позволяет использовать полуфабрикаты из этого сплава для изготовления высоко нагруженных конструкционных деталей, подвергаемых знакопеременным нагрузкам, в которых высокая вероятность появления усталостных трещин может привести к их разрушению.

Известен жаропрочный деформируемый сплав на основе алюминия, содержащий, мас.%:
Медь - 4,85-5,8
Марганец - 0,4-0,8
Магний - 0,5-1,0
Серебро - 0,2-0,8
Цирконий - до 0,25
Железо - до 0,1
Кремний - до 0,1
Алюминий - Остальное
/патент США 5652063 /.

При хорошем сочетании прочностных свойств и жаропрочности сплав и изделия из этого сплава имеют недостаточно высокие характеристики трещиностойкости.

Наиболее близким по химическому составу и назначению является известный жаропрочный деформируемый сплав на основе алюминия марки 1225, имеющий следующий химический состав, мас.%:
Медь - 5,5-6,5
Марганец - 0,4-0,8
Магний - 0,2-0,35
Титан - 0,05-0,1
Цирконий - 0,06-0,2
Ванадий - 0,05-0,15
Молибден - 0,02-0,08
Кремний - 0,12-0,25
Алюминий - Остальное
причем соотношение количеств молибдена и ванадия составляет 1:2.

/патент России 2048577/.

Сплав рекомендовано использовать для работы в конструкциях ответственного назначения, элементы деталей которых работают при температуре 175oС.

Недостатком сплава является недостаточно высокий уровень прочностных свойств, жаропрочности и трещиностойкости, что не позволяет использовать его в нагруженных деталях двигателя ГТД нового поколения, а также в греющихся элементах конструкций сверхзвуковых самолетов.

Технической задачей данного изобретения является создание сплава системы алюминий - медь - марганец, обладающего повышенными жаропрочностью и трещиностойкостью при температуре до 200oС, а также изделия, выполненного из этого сплава.

Для решения поставленной задачи предлагается жаропрочный сплав на основе алюминия, содержащий медь, марганец, магний, титан, цирконий, ванадий, кремний, отличающийся тем, что он дополнительно содержит германий, никель и железо при следующем соотношении компонентов, мас.%:
Медь - 5,8-6,8
Марганец - 0,4-0,8
Магний - 0,2-0,4
Титан - 0,05-0,15
Цирконий - 0,10-0,20
Ванадий - 0,01-0,20
Германий - 0,10-0,20
Никель - 0,01-0,50
Железо - 0,01-0,50
Кремний - 0,01-0,30
Алюминий - Остальное
и изделие, выполненное из этого сплава.

Технический результат, обусловленный применением сплава данного состава, - повышение прочности при комнатной и повышенных температурах, жаропрочности и характеристик трещиностойкости полуфабрикатов и деталей в термически обработанном состоянии и, как следствие, повышение надежности летательных аппаратов и сроков их эксплуатации.

Комплексное легирование сплава предложенными дополнительными компонентами (германий, никель, железо) обеспечивает получение нерекристаллизованной структуры прессованных полуфабрикатов с регламентированным количеством избыточных фаз, высокой плотностью дисперсоида из мелких включений алюминидов переходных металлов и с повышенной дисперсностью упрочняющих зон (метастабильных частиц на основе фазы СuАl2). Эта структура полуфабриката гарантирует получение высокого уровня прочностных свойств при комнатной и повышенных температурах, повышенной длительной прочности, высоких характеристик трещиностойкости.

Пример осуществления.

В электрической печи приготавливали плавки массой по 70 кг из сплавов приведенных в табл.1, составов 1-4, где 1-3 это предлагаемые составы, а 4 - сплав-прототип, из которых отливали слитки диаметром 134 мм. Слитки из сплава прототипа и предлагаемого сплава после гомогенизации и механической обработки прессовали при 450oС на полосу сечением 10•100 мм. Полосы подвергли следующей упрочняющей термической обработке: закалка в воде после нагрева продолжительностью 40 минут при температуре 525oС, правка растяжением с остаточной деформацией 2%, искусственное старение по режиму 190oС - 6 часов.

Полученный материал подвергли испытаниям с определением временного сопротивления разрыву σв, предела текучести σ0,2, относительного удлинения δ, длительной прочности за 1000 часов при 175oС, вязкости разрушения Ксу, остаточной прочности σнеттотр

. При этом механические свойства на растяжение определяли при комнатной температуре и при 175oС, а также при комнатной температуре после нагрева 1000 часов при 175oС. Результаты испытания приведены в табл.2.

Полученные данные свидетельствуют, что предлагаемый сплав имеет по сравнению с прототипом более высокие прочностные свойства при комнатной и повышенных температурах, повышенную вязкость разрушения и остаточную прочность. Это преимущество предлагаемого сплава перед прототипом составляет для среднего состава 15-20% по прочностным свойствам при комнатной и повышенных температурах, 15% по длительной прочности, 15% по характеристикам трещиностойкости.

Таким образом, предлагаемый сплав позволяет за счет дополнительного легирования получить оптимальную структуру полуфабриката с повышенными на 15-20% характеристиками прочности и трещиностойкости. Применение таких полуфабрикатов для изготовления нагруженных деталей двигателей ГТД нового поколения и греющихся деталей в конструкциях сверхзвуковых летательных аппаратов позволит уменьшить массу конструкции и повысить надежность ее эксплуатации.

Похожие патенты RU2222628C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2001
  • Телешов В.В.
  • Давыдов В.Г.
  • Захаров В.В.
  • Андреев Д.А.
  • Воробьев Н.А.
  • Бер Л.Б.
  • Головлева А.П.
RU2198952C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2010
  • Телешов Виктор Владимирович
  • Захаров Валерий Владимирович
  • Кайбышев Рустам Оскарович
RU2425165C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2002
  • Телешов В.В.
  • Давыдов В.Г.
  • Захаров В.В.
  • Андреев Д.А.
  • Воробьев Н.А.
  • Бер Л.Б.
  • Головлева А.П.
RU2226568C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ПОНИЖЕННОЙ ПЛОТНОСТЬЮ И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Швечков Евгений Иванович
  • Фисенко Ирина Антонасовна
  • Кириллова Лидия Петровна
RU2468107C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Фридляндер И.Н.
  • Романова О.А.
  • Данилов С.Ф.
  • Ланцова Л.П.
  • Якимова Е.Г.
  • Алексеева О.И.
  • Дмитриева М.Н.
  • Телешов В.В.
  • Елагин В.И.
  • Щербакова В.Н.
  • Каримова С.А.
  • Старова Е.Н.
RU2048577C1
ЖАРОПРОЧНЫЙ СПЛАВ 1996
RU2125110C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Легких Антон Николаевич
RU2771396C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Авдюхин Сергей Павлович
  • Дуб Алексей Владимирович
  • Квасницкая Юлия Георгиевна
  • Ковалев Геннадий Дмитриевич
  • Кульмизев Александр Евгеньевич
  • Лубенец Владимир Платонович
  • Скоробогатых Владимир Николаевич
RU2538054C1
СВАРИВАЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ БРОНИ 2013
  • Каширин Вячеслав Федорович
RU2536120C1

Иллюстрации к изобретению RU 2 222 628 C1

Реферат патента 2004 года ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Изобретение относится к металлургии, в частности к жаропрочным деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в греющихся частях летательных аппаратов, например в деталях двигателя или в элементах деталей обшивки сверхзвуковых самолетов. Предложен сплав и изделие, выполненное из него, содержащие следующие компоненты, мас. %: медь 5,8-6,8, марганец 0,4-0,8, магний 0,2-0,4, титан 0,05-0,15, цирконий 0,10-0,20, ванадий 0,01-0,20, германий 0,10-0,20, никель 0,01-0,50, железо 0,01-0,50, кремний 0,01-0,30, алюминий остальное. Техническим результатом изобретения является создание сплава и изделия, выполненного из него, обладающих повышенными значениями трещиностойкости и жаропрочности. 2 с.п.ф-лы, 2 табл.

Формула изобретения RU 2 222 628 C1

1. Жаропрочный сплав на основе алюминия, содержащий медь, марганец, магний, титан, цирконий, ванадий, кремний, отличающийся тем, что он дополнительно содержит германий, никель и железо при следующем соотношении компонентов, мас.%:

Медь 5,8-6,8

Марганец 0,4-0,8

Магний 0,2-0,4

Титан 0,05-0,15

Цирконий 0,10-0,20

Ванадий 0,01-0,20

Германий 0,10-0,20

Никель 0,01-0,50

Железо 0,01-0,50

Кремний 0,01-0,30

Алюминий Остальное

2. Изделие, выполненное из жаропрочного сплава на основе алюминия, отличающееся тем, что оно выполнено из сплава следующего химического состава, мас.%:

Медь 5,8-6,8

Марганец 0,4-0,8

Магний 0,2-0,4

Титан 0,05-0,15

Цирконий 0,10-0,20

Ванадий 0,01-0,20

Германий 0,10-0,20

Никель 0,01-0,50

Железо 0,01-0,50

Кремний 0,01-0,30

Алюминий Остальное

Документы, цитированные в отчете о поиске Патент 2004 года RU2222628C1

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Фридляндер И.Н.
  • Романова О.А.
  • Данилов С.Ф.
  • Ланцова Л.П.
  • Якимова Е.Г.
  • Алексеева О.И.
  • Дмитриева М.Н.
  • Телешов В.В.
  • Елагин В.И.
  • Щербакова В.Н.
  • Каримова С.А.
  • Старова Е.Н.
RU2048577C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1988
  • Лебедев В.М.
  • Никитина Н.Р.
  • Савосин А.В.
  • Энтин Л.Х.
  • Натапов С.Л.
SU1600362A1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 0
SU313886A1
US 5655063, 29.07.1997
ВРУБОВАЯ МАШИНА 1934
  • Краснов Н.И.
SU38605A1

RU 2 222 628 C1

Авторы

Каблов Е.Н.

Фридляндер И.Н.

Романова О.А.

Якимова Е.Г.

Телешов В.В.

Зеленюк Н.Ю.

Даты

2004-01-27Публикация

2002-06-03Подача