Изобретение относится к химическому кислотному травлению металлов, приводящему к образованию отработанных металлосодержащих травильных растворов и промывных вод. Более конкретно, настоящее изобретение относится к регенерации летучих кислот из отработанных травильных растворов (ОТР) и утилизации отходов, образующихся в результате травления. В частности, изобретение относится к регенерации соляной, плавиковой, азотной кислот из отработанных травильных растворов путем термогидролиза, последующей абсорбции образующихся при этом кислотных газов водным раствором.
В последнее время все большее внимание уделяется проблеме создания замкнутых безотходных травильно-регенерационных циклов. Существуют две проблемы, связанные с возможностью создания замкнутых травильно-регенерационных циклов. Во-первых, при абсорбции кислотных газов не удается полностью их перевести в водный раствор кислоты, при этом, например, при солянокислотном травлении примерно 7-5% хлористого водорода не улавливается, и поэтому нейтрализуется щелочью с образованием сточных вод, представляющих собой нежелательные отходы с точки зрения экологии, требующие удаления и дальнейшей обработки. Во-вторых, желательно соблюдение условия, при котором соотношение объемов промывных вод и ОТР приблизительно равно. Нарушение данного условия с превышением объема промывных вод приводит к дисбалансу травильных стоков и, следовательно, повлечет за собой организацию дополнительных очистных сооружений (станций нейтрализации).
Существующие технологии травления и регенерации не всегда успешно решают указанные проблемы.
Известен способ регенерации кислот из металлосодержащих растворов после этапа травления (RU 2142408, МПК С 01 В 21/38, С 01 В 7/01, С 01 В 7/19, опубл. 10.12.1999). Способ включает выпаривание (как частный случай упаривания) ОТР, содержащих летучие кислоты, также термогидролиз с отделением полученного твердого продукта, последующую абсорбцию образующихся при термогидролизе отходящих газов с выходом водного раствора кислоты; отходящие газы подвергаются воздействию щелочи для нейтрализации остатков отходящих кислотных газов с образованием сточных вод. При этом способ проводят с использованием технологической среды, например, для проведения абсорбции отходящих газов.
При высокотемпературном упаривании отработанный травильный раствор делится на две части - газообразную составляющую и концентрат. Интенсивно выделяющаяся в газообразную фазу кислота отводится и в дальнейшем нейтрализуется щелочью. При этом происходят значительные потери кислоты и щелочи для нейтрализации и, как следствие, - увеличиваются экономические затраты.
Кроме того, в известном техническом решении при упаривании ОТР происходит испарение воды с образованием слабокислого водного раствора, что приводит к ее потере и невозможности дальнейшего использования в травильно-регенерационном цикле, например, в качестве чистой воды для проведения операций промывки.
Помимо указанных недостатков, сточные воды, образующиеся после обработки щелочью отходящих газов как после проведения абсорбции, так и после упаривания, представляют собой отходы, нежелательные с экологической точки зрения, удаление которых в данном способе не предусмотрено.
В отношении предлагаемого травильно-регенерационного цикла решается задача создания бессточного цикла, работающего по замкнутой схеме, за счет обработки жидких стоков и получения полезных продуктов, возвращаемых в технологический процесс.
В отношении предлагаемого способа регенерации отработанных травильных растворов решается задача создания способа, расширяющего арсенал эффективных методов регенерации за счет уменьшения потерь технологических составляющих, а также за счет получения полезных продуктов, возвращаемых в технологический процесс.
Данная задача по одному аспекту изобретения достигается посредством травильно-регенерационного процесса, заключающегося в этапе травления, этапе регенерации отработанных травильных растворов, содержащих летучие кислоты, путем термогидролиза с последующей абсорбцией отходящих кислотных газов, обработке щелочью оставшихся после абсорбции отходящих кислотных газов с образованием сточных вод, при этом этап травления и регенерации проводят с использованием технологической среды, в котором согласно изобретению сточные воды упаривают с получением воды и концентрата солей летучих кислот, причем полученную воду используют в качестве технологической среды, а концентрат солей летучих кислот направляют на технологические нужды.
Целесообразно, чтобы полученную воду использовали для операций промывки и/или для проведения абсорбции.
Указанная выше задача согласно другому аспекту изобретения решается посредством способа регенерации отработанных травильных растворов, содержащих летучие кислоты, с использованием технологической среды, включающего упаривание, термогидролиз с отделением полученных твердых веществ, последующей абсорбцией отходящих при термогидролизе кислотных газов, обработку щелочью оставшихся после абсорбции отходящих кислотных газов с выходом сточных вод, в котором согласно изобретению перед упариванием в отработанных травильных растворах (ОТР) предварительно нейтрализуют свободную кислоту с получением воды после упаривания, при этом воду используют в качестве технологической среды.
Целесообразно, чтобы полученную воду использовали для операций промывки и/или для проведения абсорбции.
Предпочтительно, чтобы нейтрализацию свободной кислоты проводили металл - или металлоксидно-, или металлогидроксидным реагентом.
Заявляемый способ регенерации ОТР представляет собой самостоятельное техническое решение и может быть использован в травильно-регенерационном процессе определенной технологии; в результате способа получают эффективно регенерированную кислоту и полезные продукты, возвращаемые опять же в рассматриваемый цикл.
Травильно-регенерационный процесс объединен в одну заявку со способом регенерации ОТР на том основании, что последний обеспечивает наиболее эффективную работу всего процесса по замкнутой схеме, предусматривающей обработку всех видов отходов с возвратом полезного продукта в технологический процесс.
В предлагаемом травильно-регенерационном процессе проведение упаривания сточных вод, представляющих собой водный раствор смеси соли и щелочи, образованной при обработке щелочью неизбежных остатков летучих кислот в процессе регенерации ОТР, дает возможность получить воду и возвратить ее в технологический процесс в качестве технологической среды.
Целесообразность использования полученной воды в качестве промывной объясняется необходимостью уменьшения объема промывных вод для сохранения баланса с объемом травильных стоков.
Таким образом, проведение упаривания исключает сброс сточных вод и обеспечивает возврат воды в технологический процесс.
Из уровня техники известно, что проведение упаривания водного раствора, полученного на конечной стадии регенерации ОТР, позволяет получить концентрат и водный конденсат с возвратом последнего в травильно-регенерационный цикл в качестве промывных вод. Так, например, в способе регенерации отработанных растворов, содержащих серную кислоту (по патенту RU 2149221, МПК С 25 В 1/22, C 02 F 1/46, опубл. 20.05.2000), упаривают водный раствор, полученный после прохождения соответствующим образом в электролизере предварительно смешанного отработанного раствора, содержащего серную кислоту, с промывными водами. При этом получают концентрат серной кислоты и водный конденсат, при этом последний направляют на промывочные операции. В заявляемом же травильно-регенерационном процессе упариванию подлежит раствор, получение которого является технологической необходимостью поглощения летучих остатков кислоты щелочью. При упаривании такого раствора (как и любого другого водного раствора) получают концентрат и водный конденсат, который возвращают в технологический процесс. В отличие от указанного известного способа в рассматриваемом техническом решении получают воду, используемую в технологии, не прибегая к отработанной воде в качестве исходной для получения чистой воды.
Использование концентрата солей летучих кислот для технологических нужд наряду с другими полученными полезными продуктами позволяет признать рассматриваемую технологию как замкнутый процесс.
В предлагаемом способе регенерации нейтрализация свободной кислоты в ОТР при дальнейшем его упаривании дает возможность избежать попадания регенерируемых летучих кислот в водный конденсат, что позволяет сократить потери регенерируемой кислоты и необходимую для нейтрализации щелочь. Другими словами, упаривание раствора с минимальным содержанием кислоты обусловливает получение воды, не обогащенной кислотой, с дальнейшим ее использованием в качестве технологической среды для операций промывки.
Нейтрализация свободной кислоты путем добавления металл- или металлоксидно-, или металлогидроксидного реагента позволяет видоизменить форму кислоты, содержащейся в ОТР, до упаривания, переводя ее в соль железа, и проводить дальнейшие операции способа без потерь регенерируемой кислоты. Так, при термогидролизе максимально сконцентрированных солей железа, полученных в результате упаривания, появляется возможность разложения солей железа на отходящие кислотные газы и оксид железа с меньшими энергетическими затратами, поскольку вся регенерируемая кислота остается в системе.
Целесообразность использования полученной воды в качестве промывных вод или в качестве среды для проведения абсорбции заключается в необходимости сохранения баланса с объемом отработанного травильного раствора.
Анализ известных технических решений, касающихся травильно-регенерационного процесса и способа регенерации отработанных травильных растворов (ОТР), а также анализ совокупности существенных признаков предлагаемого изобретения позволяет сделать вывод о соответствии данного изобретения критерию “новизна”.
Заявляемые существенные признаки изобретения, предопределяющие получение технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии изобретения критерию “изобретательский уровень”.
Осуществление травильно-регенерационного процесса и способа регенерации ОТР подтверждается следующими примерами и иллюстрируется схемой процесса, представленной на чертеже.
Металлические изделия подвергают травлению в травильной ванне 1 с использованием одной из кислот: соляной, азотной, плавиковой с образованием ОТР. Далее металлические изделия направляют на дальнейшую очистку водой в промывные ванны (на чертеже не показаны) противоточного промывочного каскада травильного отделения. При этом из полученного ОТР в упомянутой травильной ванне 1 удаляют остаточную кислоту путем добавления оксида железа до получения слабокислого раствора солей железа. Затем по трубопроводу 2 полученный нейтральный раствор подают в испаритель 3 на упаривание; в результате упаривания получают водный концентрат солей железа и водный конденсат, который используют для промывки в первых по ходу движения металлических изделий ваннах противоточного промывочного каскада. Полученный концентрат солей железа по трубопроводу 4 подают для нагрева в рекуператоре 5, затем через трубопровод 6 подают в печь обжига 7 для проведения термогидролиза, где концентрат солей железа разлагается на газообразную составляющую в виде кислотных газов и твердые отходы в виде оксида железа. Оксиды железа, осаждающиеся в печи обжига 7 и в узле 8 циклонной очистки отходящих газов от механических примесей, выгружаются обычным образом в сборник 9 твердых веществ. Первоначально очищенная от механических примесей газовоздушная смесь из печи обжига 7 по трубопроводу 10 подается в рекуператор 5 для нагрева. Отходящие после термогидролиза кислотные газы через трубопровод 11 попадают в колонну 12 абсорбции, в которой происходят реакции улавливания кислотных газов с использованием промывной воды травильных отделений. В результате абсорбции получают регенерированную кислоту, возвращаемую для повторного использования в ванну 1 травильного отделения. Неизбежно остающиеся после абсорбции газы поступают в санитарную абсорбционную колонну 13, затем для окончательного обезвреживания перед выбросом в атмосферу в щелочной скруббер 14, где протекает реакция, приводящая к образованию сточной воды. Последнюю с помощью трубопровода 14 подают в испаритель 15 на упаривание с получением концентрата солей одной из кислот: соляной, азотной или плавиковой и водного конденсата. Нейтральные газы, остающиеся после абсорбции, отводятся в атмосферу посредством хвостового вентилятора 16. При этом водный конденсат используют для финишной промывки металлических изделий в последней ванне противоточного промывочного каскада травильного отделения, а также для приготовления щелочного раствора и для орошения в санитарной абсорбционной колонне 13. Концентрат соли летучей кислоты направляют на технологические нужды, например, для регенерации ионообменных смол в установках химводоподготовки.
Ниже приводятся примеры с количественными характеристиками, поясняющие возможность осуществления изобретения с применением различных летучих кислот.
Пример 1. После травления в соляной кислоте отработанный травильный раствор (ОТР) имеет следующий состав: НСl - 12,4 г/дм3, FeCl2 - 114,9 г/дм3, взвешенные вещества - 2,1 г/дм3, остальное - H2O расходом 31,4 л/ч и промывные воды состава: НСl - 1,1 г/дм3, FeCl2 - 4,2 г/дм3, взвешенные вещества - 0,36, остальное - вода расходом 28,6 л/ч. В ОТР добавляют оксид железа Fе2О3 до уменьшения концентрации соляной кислоты в пределах 0,3-0,7 г/дм3, после чего проводят упаривание данного раствора с получением 15,3 л/ч концентрата состава: НСl - 24,9 г/дм3, FeCl2 - 235,5 г/дм3, остальное - вода и 15,9 л/ч конденсата состава: НСl - 1,72 г/дм3, остальное - вода. Полученный конденсат направляют в технологический цикл, при этом полученный концентрат при дальнейшем проведении термогидролиза разлагается на хлористый водород и мелкодисперсный оксид железа. Хлористый водород абсорбируют кислой средой - промывными водами с получением регенерированного травильного раствора состава: НСl - 131,2 г/дм3, FeCl2 - 2,14 г/дм3, остальное - вода в количестве 30,8 л/ч. Регенерированный раствор в травильно-регенерационном процессе используют без корректировки состава.
Оставшиеся после термогидролиза кислотные газы обрабатывают щелочью NaOH с образованием сточных вод состава: NaCl - 14,7 г/дм3, NaOH - 0,63 г/дм3, остальное - вода расходом 2,7 л/ч. Сточную воду упаривают с получением конденсата состава: NaCl - 7,2 мг/дм3, рН - 9,3 и концентрата состава: NaCl - 147 г/дм3, NaOH - 6,3 г/дм3. Как указывалось выше, полученный конденсат и концентрат направляют на дальнейшее использование.
Пример 2. После травления в соляной кислоте отработанный травильный раствор (ОТР) имеет следующий состав: НСl - 17,9 г/дм3, FeCl2 - 71,61 г/дм3, взвешенные вещества - 2,1 г/дм3, остальное - H2O расходом 31,4 л/ч и промывные воды состава: НСl - 1,1 г/дм3, FeCl2 - 4,2 г/дм3, взвешенные вещества - 0,36, остальное - вода расходом 28,6 л/ч. В ОТР добавляют порошок металлического железа до уменьшения концентрации соляной кислоты в пределах 0,3-0,7 г/дм3, после чего проводят упаривание данного раствора с получением 15,3 л/ч концентрата состава: НСl - 27,92 г/дм3, FeCl2 - 253,52 г/дм3, остальное - вода и 15,9 л/ч конденсата состава: НСl - 0,059 г/дм3, остальное - вода. Полученный конденсат направляют в технологический цикл, при этом полученный концентрат при дальнейшем проведении термогидролиза разлагается на хлористый водород и мелкодисперсный оксид железа. Хлористый водород абсорбируют кислой средой - промывными водами с получением регенерированного травильного раствора состава: НСl - 131,2 г/дм3, FeCl2 - 2,14 г/дм3, остальное - вода в количестве 30,8 л/ч. Регенерированный раствор в травильно-регенерационном процессе используют без корректировки состава.
Оставшиеся после термогидролиза кислотные газы обрабатывают щелочью NaOH с образованием сточных вод состава: NaCl - 14,7 г/дм3, NaOH - 0,63 г/дм3, остальное - вода расходом 2,7 л/ч. Сточную воду упаривают с получением конденсата состава: NaCl - 7,2 мг/дм3, рН - 9,3 и концентрата состава: NaCl - 147 г/дм3, NaOH - 6,3 г/дм3. Как указывалось выше, полученный конденсат и концентрат направляют на дальнейшее использование.
Пример 3. По вышеописанной технологии обрабатывали ОТР осветления легированных сталей состава: HNO3 - 111 г/дм3, Fe - 33,4 г/дм3, Cr - 6,4 г/дм3, Ni - 5,8 г/дм3, F - 47,1 г/дм3, остальное - вода расходом 18,8 л/ч. В результате упаривания раствора, в который добавляли Fe2O3, был получен раствор для термогидролиза со степенью концентрирования 2,35 и конденсат состава: НNО3 - 1,32 г/дм3, HF - 0,72 г/дм3, соли тяжелых металлов - 0,07 г/дм3. Конденсат используют в технологическом цикле.
Регенерированный раствор имеет состав: HNO3 - 184,3 г/дм3, HF - 51,6 г/дм3, Cr - 0,04 г/дм3, Ni - 0,03 г/дм3, Fe - 0,12 г/дм3, повторно используемый в технологическом цикле без корректировки.
Возможность использования совокупности существенных признаков позволяет сделать вывод о соответствии данного изобретения критерию “промышленная применимость”.
Заявляемое изобретение, кроме указанных выше технических результатов, обеспечивает следующие технические преимущества по сравнению с известным ближайшим аналогом:
- упрощение установки для проведения регенерации;
- повышение коррозионной стойкости оборудования за счет нейтрализации свободной кислоты;
- продление срока службы оборудования, снижение его металлоемкости;
- сокращение потерь кислоты и щелочи и, как следствие, уменьшение экономических затрат;
- уменьшение энергозатрат.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГЕНЕРАЦИИ ИСПОЛЬЗУЕМЫХ ДЛЯ ТРАВЛЕНИЯ МЕТАЛЛОВ РАСТВОРОВ | 2003 |
|
RU2330902C2 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ СОЛЯНОЙ КИСЛОТЫ | 2005 |
|
RU2294982C1 |
Способ выделения азотной и плавиковой кислот из отработанных травильных растворов | 1988 |
|
SU1739859A3 |
Устройство для регенерации отработанного травильного раствора и промывных вод | 1986 |
|
SU1388460A1 |
СПОСОБ РЕГЕНЕРАЦИИ СОЛЯНОЙ КИСЛОТЫ ИЗ ОТРАБОТАННЫХ ТРАВИЛЬНЫХ РАСТВОРОВ | 1994 |
|
RU2061102C1 |
Способ получения моногидрата гидроксида лития из рассолов и установка для его осуществления | 2016 |
|
RU2656452C2 |
УСТАНОВКА ДЛЯ РЕГЕНЕРАЦИИ СОЛЯНОЙ КИСЛОТЫ ИЗ ОТРАБОТАННОГО ТРАВИЛЬНОГО РАСТВОРА | 2012 |
|
RU2490374C1 |
СПОСОБ РЕГЕНЕРАЦИОННОЙ ОЧИСТКИ МЕДНО-АММИАЧНЫХ ТРАВИЛЬНЫХ РАСТВОРОВ | 2007 |
|
RU2334023C1 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ, СОДЕРЖАЩИХ СЕРНУЮ КИСЛОТУ | 1999 |
|
RU2149221C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЛИ РЕГЕНЕРАЦИИ КИСЛОТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2142408C1 |
Изобретение относится к химическому кислотному травлению металлов, приводящему к образованию отработанных металлсодержащих травильных растворов и промывных вод. В частности, изобретение относится к регенерации летучих кислот: соляной, плавиковой, азотной кислот из отработанных травильных растворов и обработке образующихся отходов. Травильно-регенерационный процесс заключается в этапе травления и этапе регенерации отработанных травильных растворов, содержащих летучие кислоты, путем термогидролиза с последующей абсорбцией отходящих кислотных газов, обработки щелочью оставшихся после абсорбции отходящих кислотных газов с образованием сточных вод. Сточные воды упаривают с получением воды и концентрата солей летучих кислот, причем полученную воду используют в качестве технологической среды, а концентрат солей летучих кислот направляют на технологические нужды. Способ регенерации отработанных травильных растворов (ОТР) заключается в нейтрализации свободных кислот, дальнейшем упаривании с получением воды, термогидролизе с отделением полученных твердых веществ, последующей абсорбции отходящих при термогидролизе кислотных газов, обработке щелочью оставшихся после абсорбции отходящих кислотных газов с выходом сточных вод. Технический результат: создание бессточного цикла, упрощение установки для проведения регенерации, повышение коррозионной стойкости оборудования, продление срока его службы, уменьшение энергозатрат и экономических затрат. 2 с. и 3 з.п. ф-лы, 1 ил.
СПОСОБ ПОЛУЧЕНИЯ ИЛИ РЕГЕНЕРАЦИИ КИСЛОТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2142408C1 |
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННОЙ СОЛЯНОЙ КИСЛОТЫ | 1985 |
|
SU1351176A1 |
Безгравийный дренаж для фильтрующих устройств | 1985 |
|
SU1311757A1 |
Авторы
Даты
2004-07-10—Публикация
2003-02-03—Подача