КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 1997 года по МПК C22C21/06 

Описание патента на изобретение RU2085607C1

Изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала.

Существуют в металлургии криогенные термически неупрочняемые сплавы на основе алюминия [1] в частности сплав АМг4 следующего химического состава, мас.

Магний 3,8-4,8
Марганец 0,5-0,8
Хром 0,05-0,25
Титан 0,02-0,1
Бериллий 0,0001-0,005
Алюминий Остальное
Однако, существующий сплав имеет низкие прочностные свойства при высокой технологичности, хорошей свариваемости, высокой коррозионной стойкости и хорошей работоспособности при криогенных температурах.

Известен деформируемый термически неупрочняемый сплав на основе алюминия [2] применяемый как криогенный, следующего химического состава, мас.

Магний 5,8-6,8
Марганец 0,5-0,8
Титан 0,02-0,1
Бериллий 0,0002-0,005
Алюминий Остальное
Однако, известный сплав имеет низкую работоспособность в жидком водороде при достаточно высокой прочности, способности работать в жидком азоте и в жидком кислороде, хорошей свариваемости, удовлетворительной коррозионной стойкости и удовлетворительной технологичности в условиях металлургического производства.

Предлагается криогенный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан и бериллий, в который дополнительно введены цирконий, скандий и церий и компоненты взяты в следующем соотношении, мас.

Магний 3,9-4,9
Титан 0,01-0,1
Бериллий 0,0001-0,005
Цирконий 0,05-0,15
Скандий 0,2-0,5
Церий 0,001-0,004
Алюминий Остальное
Предлагаемый сплав отличается от прототипа тем, что он дополнительно содержит цирконий, скандий и церий при следующем соотношении компонентов, мас.

Магний 3,9-4,9
Титан 0,01-0,1
Бериллий 0,0001-0,005
Цирконий 0,05-0,15
Скандий 0,2-0,5
Церий 0,001-00,4
Алюминий Остальное
Цель изобретения повышение работоспособности сплава при работе в среде жидкого водорода, что позволит снизить вес криогенных конструкций, в частности конструкции летательного аппарата, использующего жидкий водород в качестве горючего, и повысить их надежность.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве образуется пластичная матрица, представляющая собой, в основном, твердый раствор магния в алюминии и обеспечивающая за счет высокого запаса пластичности высокую работоспособность сплава в условиях сверхнизких температур, в том числе при работе в среде жидкого водорода. В то же время за счет вторичных выделений дисперсных частиц интерметаллидов, содержащих алюминий, скандий и другие переходные металлы, входящие в состав сплава, поддерживается высокий уровень прочностных свойств сплава как при комнатной, так и при криогенных температурах.

Пример. С использованием технического алюминия А85, магния МГ90, двойных лигатур алюминий-марганец, алюминий-титан, алюминий-бериллий, алюминий-цирконий, алюминий-скандий и алюминий-церий в электропечи готовили сплав и методом полунепрерывного литья отливали плоские слитки сечением 165х550 мм из сплава предлагаемого состава с минимальным, оптимальным, максимальным содержанием компонентов, с запредельным содержанием компонентов, а также из известного сплава по прототипу (табл.1).

Слитки после гомогенизации обрабатывали механически до толщины 140 мм, после чего при 400oC прокатывали на стане горячей прокатки до толщины 10 мм, затем на стане холодной прокатки до толщины 3 мм. Полученные таким образом холоднокатаные листы толщиной 3 мм подвергали отжигу. Отожженные листы толщиной 3 мм служили материалом для исследования.

На стандартных поперечных образцах, вырезанных из листов, определяли механические свойства при температуре жидкого азота (-196oC) и при температуре жидкого водорода (-253oC). О работоспособности сплава при этих температурах судили по сочетанию прочностных (предел прочности σв и предел текучести σ0,2) и пластических (относительное удлинение δ) характеристик. При этом имели в виду, что сплав обладает достаточной работоспособностью в среде жидкого водорода, если он не охрупчивается, т.е. если относительное удлинение не уменьшается при переходе от температуры жидкого азота к температуре жидкого водорода. Результаты испытаний приведены в табл.2.

Как видно из табл.2, предлагаемый сплав обладает более высокими прочностными и пластическими свойствами при криогенных температурах по сравнению с известным. Это позволит на 10-15% снизить вес криогенных конструкций, изготавливаемых из предлагаемого сплава. Кроме того, при снижении температуры испытаний от температуры жидкого азота до температуры жидкого водорода пластичность предлагаемого сплава не только не уменьшается, но даже несколько возрастает, что говорит о его достаточно высокой работоспособности в среде жидкого водорода, что в свою очередь позволит создать принципиально новые высокотехнологичные конструкции летательных аппаратов на криогенном топливе, и в частности на жидководородном горючем. Благодаря тому, что предлагаемый сплав относится к термически неупрочняемым, он обладает хорошей свариваемостью и может применяться для сварных конструкций как в качестве основного металла, так и в качестве присадочного материала для сварки плавлением.

Похожие патенты RU2085607C1

название год авторы номер документа
КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2007
  • Филатов Юрий Аркадьевич
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Доброжинская Руслана Ивановна
  • Елисеев Александр Александрович
  • Додин Геннадий Васильевич
  • Звонков Александр Анатольевич
  • Петроковский Сергей Александрович
  • Молочев Валерий Петрович
RU2343218C1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2003
  • Филатов Ю.А.
  • Давыдов В.Г.
  • Елагин В.И.
  • Захаров В.В.
  • Швечков Е.И.
  • Панасюгина Л.И.
  • Доброжинская Р.И.
RU2233345C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Конкевич Валентин Юрьевич
  • Ильенок Андрей Алексеевич
  • Сухомлин Виктор Степанович
RU2082807C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2008
  • Филатов Юрий Аркадьевич
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Космачева Наталия Петровна
  • Карсанова Любовь Гордеевна
  • Доброжинская Руслана Ивановна
  • Баженова Ольга Петровна
RU2384636C1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2015
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Байдин Николай Григорьевич
  • Лапин Петр Георгиевич
  • Доброжинская Руслана Ивановна
  • Звонков Александр Анатольевич
  • Молочев Валерий Петрович
  • Овсянников Борис Владимирович
  • Хамнагдаева Евгения Александровна
RU2599590C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Бочвар Сергей Георгиевич
  • Доброжинская Руслана Ивановна
RU2639903C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2013
  • Задерей Александр Геннадьевич
  • Ковалев Геннадий Дмитриевич
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Дегтярь Владимир Григорьевич
  • Чернов Сергей Сергеевич
  • Звонков Александр Анатольевич
  • Махов Сергей Владимирович
  • Доброжинская Руслана Ивановна
  • Овсянников Борис Владимирович
  • Семовских Станислав Валерьевич
RU2513492C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Филатов Ю.А.
  • Елагин В.И.
  • Захаров В.В.
RU2082809C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2008
  • Филатов Юрий Аркадьевич
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Конкевич Валентин Юрьевич
  • Панасюгина Людмила Ивановна
  • Космачева Наталия Петровна
  • Уколова Ольга Григорьевна
  • Благутина Людмила Львовна
RU2384637C1

Иллюстрации к изобретению RU 2 085 607 C1

Реферат патента 1997 года КРИОГЕННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к области металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Криогенный деформируемый термически неупрочняемый сплав на основе алюминия содержит следующие компоненты, мас.%: магний 3,9-4,9, титан 0,01-0,1, бериллий 0,0001-0,005, цирконий 0,05-0,15, скандий 0,20-0,50, церий 0,001-0,004, алюминий остальное. 2 табл.

Формула изобретения RU 2 085 607 C1

Криогенный деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан и бериллий, отличающийся тем, что он дополнительно содержит цирконий, скандий и церий при следующем соотношении компонентов, мас.

Магний 3,9 4,9
Титан 0,01 0,1
Бериллий 0,0001 0,005
Цирконий 0,05 0,15
Скандий 0,20 0,50
Церий 0,001-0,004
Алюминий Остальноеи

Документы, цитированные в отчете о поиске Патент 1997 года RU2085607C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Алюминиевые сплавы
Промышленные деформируемые, спеченные и литейные алюминиевые сплавы
Справочное руководство
- М.: Металлургия, 1972, с.44
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО ГОРЕНИЯ 1918
  • Саевич Н.А.
SU4784A1

RU 2 085 607 C1

Авторы

Бондарев Борис Иванович

Давыдов Валентин Георгиевич

Доброжинская Руслана Ивановна

Елагин Виктор Игнатович

Захаров Валерий Владимирович

Филатов Юрий Аркадьевич

Даты

1997-07-27Публикация

1995-06-30Подача