Область техники
Предлагаемое изобретение относится к силовой полупроводниковой технике, в частности инверторам тока или напряжения, предназначенным для регулирования скорости асинхронных и синхронных двигателей.
Уровень техники
Управление двигателями осуществляется двухполупериодным напряжением питания. Наиболее просто реализовать напряжение питания в виде прямоугольных двуполярных импульсов. Наиболее сложно - в виде синусоиды. Правильную синусоидальную форму обеспечить фактически невозможно, поэтому практически используют форму напряжения питания, приближенную к синусоиде. Устройство, формирующее напряжение питания двигателей, называется инвертором. Инверторы обычно реализуются на полупроводниковых приборах, например транзисторах. Транзисторы используются в режиме скачкообразного изменения их сопротивления, поэтому выходное напряжение инвертора имеет крутые фронты. При разложении в ряд Фурье выходного напряжения с вертикальными фронтами будет иметь место полный натуральный ряд нечетных высших гармонических составляющих, кроме основной, или тот же ряд, за исключением гармоник, кратных трем [1]. Амплитуды составляющих ряда Фурье обратно пропорциональны порядку (номеру) гармонических составляющих. Его сумма обратно пропорциональна количеству гармонических составляющих.
Если фронты выходного напряжения будут реализованы в виде линейной функции, то количество гармонических составляющих, входящих в разложение Фурье линейной функции и оказывающих существенное влияние на выходное напряжение, будет значительно меньше, т.к. величина этой суммы ряда будет обратно пропорциональна квадрату порядка (номера) гармонических составляющих.
Если выходное напряжение инвертора содержит n гармоник, то в питаемом двигателе создается n2 крутящих и вибрационных моментов, в том числе: один -основной полезный, (n-1) - двигательных моментов и (n2-n)-вибрационных моментов [2]. Вибрационные моменты не зависят от момента нагрузки и могут быть значительными по величине: (15-20)% от основного момента. Среди (n2-n) вибрационных моментов наибольшими являются моменты, образованные током высших гармонических составляющих и ЭДС основной гармоники.
Виброускорение, создаваемое вибрационными моментами, зависит от моментов инерции статора и ротора двигателя и наряду с повышенным износом подшипников обмотки создает структурный шум, легко распространяемый по металлу и воде. Поэтому в отдельных случаях возникает проблема убрать этот шум.
Известен метод устранения высших гармонических составляющих напряжения прямоугольной формы, основанный на введении “просечек” через углы коммутации α 1, α 1, α 2,…α m на интервале α m<π /2 прямоугольной полуволны [3].
Количество вводимых углов m равно количеству исключаемых гармоник. Нахождение углов производится путем решения уравнения
Для исключения m гармоник необходимо составить m трансцедентных уравнений с m+1 неизвестными и решить эту систему (как правило, машинным способом и методом итераций), задав предварительно погрешность при минимизации функции.
Например, если система управления должна выдать 8 пар просечек в силовом напряжении с большой точностью - до 4-го знака после запятой (а для частоты 50 Гц 1° - это 55,5 мкс, то есть четвертый знак требует интервала 55,5× 10-4 мкс), то в систему управления надо ввести тактовый генератор с очень высокой частотой, около 180 МГц. Практически это неосуществимо, так как сигнал с такой частотой “течет” мимо провода по емкостным связям, что порождает межканальную помеху и сбой в работе системы управления, а значит отказ инвертора.
Этот недостаток предлагают устранить японские ученые [4]. Они предлагают ввести комбинированный способ подавления гармонических составляющих, взятый авторами за прототип:
a) произвести исключение методом введения “просечек” нескольких пар больших гармоник (например, 5, 7, 11, 13);
b) оставшиеся высшие гармоники подавить методом широтно-импульсной модуляции (ШИМ): на имеющуюся кривую сигнала наложить модулирующие импульсы треугольной формы, которые в сочетании с регулирующим постоянным напряжением позволят сузить или расширить длительность импульсов ШИМ.
Таким образом, можно обеспечить форму выходного напряжения, значительно приближенную к синусоиде.
В статье [4] приводится рисунок спектра выходного напряжения и трактуются достоинства предложенного способа: достаточно глубокое подавление гармонических составляющих (вплоть до 39) и возможность регулирования выходного напряжения.
Недостатками этого метода, по мнению авторов настоящего изобретения, являются:
1) недостаточное подавление высших гармоник, так как уровень 39 составляет около 20% основного сигнала, а на этой частоте сталь двигателя “шумит”, поэтому возникает необходимость в фильтре низкой частоты (ФНЧ);
2) изменение гармонического состава в процессе регулирования на выходе инвертора: появляются гармоники, кратные 3-м, например 21-я - до 20%;
3) ФНЧ принципиально не применим, так как при резонансе, например, на 23-й гармонике при средней добротности 8 26% превратятся в 200%, а резонансные токи могут вызвать срабатывание максимальной токовой защиты.
Сущность изобретения
Целью настоящего изобретения является снижение вибрационного ускорения электродвигателя, управляемого 3n-фазным инвертором, допускающим подключение фильтра низкой частоты (ФНЧ) без опасных резонансных увеличений силового тока, а также уменьшение трудозатрат при предварительных расчетах вибрационных характеристик.
В основу предлагаемого способа положена форма напряжения питания электродвигателей в виде двухполупериодной волны, близкой к синусоиде -трапеция, и использование метода двуполярной широтно-импульсной модуляции (ДШИМ) для управления быстродействующими полупроводниками инвертора.
Снижение вибрационного ускорения электродвигателя, управляемого выходным напряжением с 3n-фазного инвертора, заключается в формировании напряжения питания трапецеидальной формы с наложением широтно-импульсной модуляции для снижения уровня высших гармонических составляющих. Это достигается тем, что на входы инвертора (а именно на базы быстродействующих транзисторов инвертора) подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами, причем на восходящий линейный участок приходится 30° полуволны, на постоянный участок - 120° и на нисходящий линейный участок - 30° . Кроме того, широтно-импульсная модуляция применяется только на 30° -ных восходящих и нисходящих линейных участках. Эти меры приводят к тому, что среднее значение разности потенциалов между фазами на выходе инвертора изменяется по закону трапеции с 60° -ной восходящей частью линейного напряжения, 60° -ной частью постоянного напряжения и 60° -ной нисходящей частью линейного напряжения.
Таким образом достигается желаемая цель:
1) Высшие гармонические составляющие убывают обратно пропорционально квадрату номера (порядка), т.е.
V5≡1/25; V7≡1/49... Vi≡ 1/(i)2.
2) Низкие уровни гармонических составляющих позволяют применить фильтр низкой частоты (ФНЧ) без увеличения токов до недопустимых значений по шуму уровней или аварийных значений.
3) Расчет гармонических составляющих упрощается: нет необходимости в решении большой системы трансцендентных уравнений на ЭВМ и в применении метода итераций. Для расчетов достаточно использовать калькулятор, имеющий в арсенале операции сложения, вычитания, нахождения значений тригонометрических функций (cos ϕ ).
Перечень фигур графического изображения
Фиг.1 - структурная схема управления электродвигателя 3-х фазным инвертором.
Фиг.2 - эпюры напряжений в средних точках инвертора и линейных напряжений на выходе инвертора.
Фиг.3 - график напряжения питания электродвигателя с выхода инвертора.
Фиг.4 - график напряжения питания электродвигателя после ФНЧ.
Фиг.5 - функциональная схема управления электродвигателя.
Сведения, подтверждающие возможность осуществления изобретения
На фиг.1 показана упрощенная структурная схема трехфазного инвертора, где 1-6 - ключи, а точки А, В, С являются точками среднего потенциала по каждой фазе, с которых снимается линейное напряжение для питания двигателя D.
На фиг.2 показана гладкая составляющая фазного и линейного напряжения. Смещение фазы в точках А, В, С составляет 120° . Как видно из эпюры на фиг.2, разность гладких составляющих трапеций фазных напряжений 30° -120° -30° дает трапецию линейных напряжений 60° -60° -60° . Таким образом, линейное напряжение имеет форму, максимально приближенную к синусоиде, но имеющую линейные восходящий и нисходящий участки. Двухполярная широтно-импульсная модуляция применяется только на 30-градусных восходящих и нисходящих участках напряжения управления ключами инвертора. Эти участки разбиваются на m интервалов в зависимости от диапазона регулирования частоты (скорости двигателя). Так, для диапазона (21-3) Гц достаточно интервалов α i по 3° .
На фиг.3 показано наложение широтно-импульсной модуляции на линейные участки напряжения управления ключами инвертора.
Для осуществления предложенного метода вводятся промежуточные углы α пр, которые рассчитываются по формуле:
α пр=1,5° (1+аср/А) - для интервала в 3° ,
α пр=1° (1+аср/А) - для интервала в 2° ,
α пр=0,5° (1+аср/А) - для интервала в 1° ,
где α ср - текущее среднее значение высоты трапеции в заданном интервале на возрастающем или снижающемся участках;
А - амплитуда трапеции.
На фиг.4 показан синусоидальный вид напряжения питания электродвигателя после сглаживания фильтром низкой частоты выходного напряжения с инвертора.
На фиг.5 представлена функциональная схема устройства, реализующего заявляемый метод. Здесь цифровые обозначения соответствуют следующим функциональным узлам:
1 - регулятор постоянного напряжения;
2 - входной фильтр автономного инвертора;
3 - инвертор;
4 - фильтр низкой частоты;
5 - двигатель нагрузки;
6 - тактовый генератор;
7 - постоянное запоминающее устройство;
8 - усилитель импульсов управления.
Интервалы по α i градусов делятся системой управления на такты шириной, разрешаемой периодом (частотой) тактового генератора 6, управляющего счетчиками постоянного запоминающего устройства 7, которое циклически опрашивается тактовым генератором основной частоты и выдает на вход усилителя импульсов управления 8 транзисторами инвертора 3 импульсы в требуемом порядке и форме. Фильтр низкой частоты 4 служит для сглаживания импульсов широтно-импульсной модуляции до синусоидальной формы. Как правило, в качестве ФНЧ применяется индуктивно-емкостной Г-образный фильтр.
Практическая реализация функциональной схемы фиг.5 осуществляется на реальных покупных изделиях: силовых модулях транзисторов фирмы Semikron и микропроцессорных и обычных микросхемах серии 564 отечественного производства.
Потенциал в точках А, В, С (фиг.1) - зеркальное отображение импульсов, посылаемых на ключи каналов инвертора 3 (фиг.5). Очередность включения ключей в ходе ШИМ следует через 180° , при этом, чтобы не было сквозной проводимости, в системе управления должна быть предусмотрена задержка начал или окончаний импульсов, которая на графике фиг.3 не показана из-за малости. Кроме того, в реальных схемах предусмотрена защита посредством специального устройства - драйвера, блокирующего одновременность проводимости каналов, сдвинутых на 180° .
Для подтверждения технического результата были проведены испытания электродвигателя мощностью 12,5 кВт, управляемого известным инвертором напряжения типа И-ПТКТ-63-220-20.
В таблице 1 приведена зависимость превышения виброускорений над нормативными значениями в децибелах в зависимости от уровня гармонических составляющих без подавления предложенным способом.
В таблице 2 приведены результаты измерения виброускорений того же двигателя мощностью 12,5 кВт, в котором реализован предлагаемый закон формирования выходного напряжения, а на выходе силовой схемы установлен ФНЧ для подавления гармоник более высокого порядка, в том числе и ШИМ.
Вывод:
Использование предложенного способа снижения вибрационного ускорения позволяет снизить его значение на большинстве гармоник до нормативных, а на отдельных гармониках (в данном примере это 11-я и 17-я) позволяет опустить ниже нормативных.
Таким образом, предлагаемый способ снижения вибрации электродвигателя, управляемого 3n-фазным инвертором, позволяет снизить вибрационное ускорение устранением высших гармонических составляющих в напряжении питания электродвигателя. При этом обеспечивается возможность подключения на выходе инвертора фильтра низкой частоты без опасных резонансных увеличений силового тока, а также уменьшаются трудозатраты при предварительных расчетах вибрационных характеристик.
ЛИТЕРАТУРА
1. Бедфорд, Р Хофт. Теория автономных инверторов. М.: Энергия, 1969.
2. Largiader Hans. Gesichtspunkte fur die Bemessung umrichtergespeister Asynchronmotoren fur die Traktion. “Brown Bower Mitt." 1970, 57,4, 152-167 (нем).
3. Hasmukh S Patel und Richard G Hoft/ Generalited Techniques of Harmonic Elimination and Voltage Control in Thyristor - Inverters. Part I - Harmonic Elimination IEEE Trans. on Appl. 1973, №3, 310-317. (РЖЭ 1973, 8И583 и 4И491, ред. А.И.Толкачев).
4. Mohamad Kuduer, Isobe Ehoji, Shinohara Uochiduki, Mazusujima Toshiharu. A composing pulse with modulation method to reduce the harmonics in voltage inverters. Япония (англ.). Реферат “силовая преобразовательная техника” Вып. С-В Том А, 1983. База данных ВИНИТИ РГ 45.37.31 0084375.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ АВТОНОМНЫМ ИНВЕРТОРОМ | 2014 |
|
RU2558722C1 |
Способ управления трехфазным мостовым вентильным инвертором | 1984 |
|
SU1236591A1 |
Способ управления трехфазным преобразователем частоты | 1976 |
|
SU686138A1 |
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНЫМ ИНВЕРТОРОМ НАПРЯЖЕНИЯ | 2016 |
|
RU2620129C1 |
Способ пространственно-векторной широтно-импульсной модуляции выходного напряжения многоуровневого трехфазного автономного инвертора напряжения | 2023 |
|
RU2818965C1 |
Способ компенсации высших гармоник и повышения качества потребляемой электроэнергии | 2018 |
|
RU2674166C1 |
Способ управления трехфазно-трехфазным преобразователем частоты с непосредственной связью | 1983 |
|
SU1241375A1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ | 2015 |
|
RU2639048C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ПОСТОЯННОГО НАПРЯЖЕНИЯ В КВАЗИСИНУСОИДАЛЬНОЕ С ВЕКТОРНОЙ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ | 2009 |
|
RU2402867C1 |
Способ управления матричным преобразователем частоты | 2016 |
|
RU2641653C1 |
Изобретение относится к силовой полупроводниковой технике и может быть использовано для регулирования скорости асинхронных и синхронных двигателей с помощью инверторов напряжения или тока. Техническим результатом является снижение вибрационного ускорения электродвигателя. В способе снижения вибрации электродвигателя, управляемого выходным напряжением 3n-фазного напряжения инвертора, на входы инвертора подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами. На восходящий линейный участок трапеции приходится 30° полуволны, на участок постоянного напряжения - 120° и на нисходящий линейный участок - 30°. Широтно-импульсную модуляцию осуществляют на восходящих и нисходящих линейных участках. В результате среднее значение разности потенциалов между фазами на выходе инвертора изменяется по закону трапеции с 60°-ными восходящей частью линейного напряжения, частью постоянного напряжения и нисходящей частью линейного напряжения, что обеспечивает снижение высших гармонических составляющих в напряжении питания электродвигателя, подключение на выходе инвертора фильтра низкой частоты без опасных резонансных увеличений силового тока и уменьшение трудозатрат при предварительных расчетах вибрационных характеристик электродвигателя. 5 ил., 2 табл.
Способ снижения вибрации электродвигателя, управляемого выходным напряжением с 3n-фазного инвертора, заключающийся в исключении высших гармонических составляющих в выходном напряжении 3n-фазного инвертора методом широтно-импульсной модуляции, отличающийся тем, что на входы 3n-фазного инвертора подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами, причем на восходящий линейный участок трапеции приходится 30° полуволны, на участок постоянного напряжения - 120° и на нисходящий линейный участок - 30°, кроме того, широтно-импульсная модуляция применяется только на восходящих и нисходящих линейных участках.
MOHAMAD KUDUER и др | |||
A composing pulse with modulation method to reduce the harmonics in voltage investors | |||
Япония (англ.) | |||
Реферат | |||
Силовая преобразовательная техника, Вып | |||
С-В, ТОМА, 1983 | |||
СПОСОБ АСИНХРОННОГО ШИРОТНО-КОДОВОГО УПРАВЛЕНИЯ ПОЛУПРОВОДНИКОВЫМ ПРЕОБРАЗОВАТЕЛЕМ ДЛЯ ЭЛЕКТРОПРИВОДА | 1991 |
|
RU2025032C1 |
СПОСОБ АСИНХРОННОГО ШИРОТНО-КОДОВОГО УПРАВЛЕНИЯ ТИРИСТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ ДЛЯ ЭЛЕКТРОПРИВОДА | 1991 |
|
RU2022441C1 |
УСТРОЙСТВО ОСЛАБЛЕНИЯ ГАРМОНИЧЕСКОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЯ | 1997 |
|
RU2161854C2 |
Способ управления трехфазным регулируемым мостовым инвертором | 1987 |
|
SU1492434A1 |
US 4629959 А, 16.12.1986 | |||
DE 3901034 C1, 19.07.1990 | |||
Крановый захват для штучных грузов | 1959 |
|
SU127187A1 |
Бесколесный шариковый ход для железнодорожных вагонов | 1917 |
|
SU97A1 |
Авторы
Даты
2004-08-10—Публикация
2002-11-29—Подача