Известный уровень техники
Настоящее изобретение относится к области способов повышения качества углеводородов. В частности, данное изобретение относится к олигомеризации олефинов.
В данной области известна олигомеризация олефинов в присутствии кислотного катализатора до углеводородов, пригодных для дизельного топлива. Поскольку требования к бензиновому топливу относительно содержания серы, ароматических соединений и упругости паров по Рейду ("RVP", определяемое как абсолютное давление пара углеводорода при 100°F (37,8°C) в фунтах на квадратный дюйм и измеряемое при помощи метода испытания ASTM D-323), становятся более строгими, то потребность в дизельном топливе может существенно возрасти. Следовательно, разработка способа олигомеризации олефинов до углеводородов, пригодных для дизельного топлива с повышенным качеством получаемого дизельного топлива, явится существенным вкладом в данную область и в экономику.
Краткое описание изобретения
Настоящее изобретение относится к способу олигомеризации олефинов до углеводородов, пригодных для дизельного топлива.
Настоящее изобретение также относится к способу олигомеризации олефинов с повышенным процентным содержанием по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, в выходящем из реактора потоке.
Настоящее изобретение также относится к способу олигомеризации олефинов, в котором повышают цетановое число олигомеров, имеющих, по меньшей мере, 9 атомов углерода на молекулу, в выходящем из реактора потоке.
В соответствии с настоящим изобретением был разработан способ олигомеризации олефинов, включающий стадии:
(a) подачу потока тяжелых углеводородов, включающего, по меньшей мере, один тяжелый олефин, имеющий от 5 до 6 атомов углерода на молекулу, в реакционную зону, содержащую катализатор для олигомеризации и имеющую реакционные условия для олигомеризации тяжелых олефинов;
(b) подачу потока легких олефинов, включающего, по меньшей мере, один легкий олефин, имеющий менее 5 атомов углерода на молекулу, со скоростью подачи в указанную реакционную зону вместе с потоком тяжелых углеводородов;
(c) выведение из указанной реакционной зоны выходящего из реактора потока, включающего олигомеры, имеющие, по меньшей мере, 9 атомов углерода на молекулу, в котором скорость подачи указанного потока легких олефинов на стадии (b) достаточна, чтобы процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, от общей массы олигомеров указанного выходящего из реактора потока со стадии (с), превышало процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, от общей массы олигомеров реакционного продукта, полученного способом, аналогичным способу со стадии (а), включая реакционные условия стадии (а) без подачи потока легких олефинов.
Подробное описание изобретения
Катализатор, применимый в настоящем изобретении, может представлять собой любой катализатор олигомеризации, подходящий для олигомеризации олефинов до углеводородов, пригодных для дизельного топлива. Катализатор для олигомеризации, предпочтительно, представляет собой кислотный катализатор. Более предпочтительно, катализатор для олигомеризации представляет собой кислотный катализатор, выбранный из группы, включающей перфторполиалкилсульфоновую кислоту, перфторалкилсульфоновую кислоту, полифторалкил-сульфоновую кислоту и соединения, представленные формулами
CnXyF(2n+1-y)SО3Н;
CnXyF(2n-y) (SО3Н)2,
а также сочетания любых двух и более указанных соединений, в которых:
Х выбран из группы, включающей водород, хлор, бром, йод и сочетания любых двух и более указанных элементов;
n равно величине от 1 до 20 включительно;
у равен величине от 0 до 39 включительно;
а алкильные группы перфторполиалкилсульфоновой кислоты, перфторалкилсульфоновой кислоты и полифторалкилсульфоновой кислоты могут содержать от 1 до 8 атомов углерода.
Наиболее предпочтительный в настоящее время катализатор для олигомеризации представляет собой кислотный катализатор, выбранный из группы, включающей перфтороктансульфоновую кислоту, перфторполиалкилсульфоновую кислоту и их сочетания.
Способ в соответствии с данным изобретением включает способ олигомеризации олефинов, включающий стадии:
(a) подачу потока тяжелых углеводородов, включающего, по меньшей мере, один тяжелый олефин, имеющий от 5 до 6 атомов углерода на молекулу, в реакционную зону, содержащую катализатор для олигомеризации и имеющую реакционные условия для олигомеризации тяжелых олефинов;
(b) подачу потока легких олефинов, включающего, по меньшей мере, один легкий олефин, имеющий менее 5 атомов углерода на молекулу, со скоростью подачи в указанную реакционную зону вместе с потоком тяжелых углеводородов;
(c) выведение из указанной реакционной зоны выходящего из реактора потока, включающего олигомеры, имеющие, по меньшей мере, 9 атомов углерода на молекулу, в котором скорость подачи указанного потока легких олефинов на стадии (b) достаточна, чтобы процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, от общей массы олигомеров указанного выходящего из реактора потока со стадии (с), превышало процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, от общей массы олигомеров реакционного продукта, полученного способом, аналогичным способу со стадии (а), включая реакционные условия стадии (а) без подачи потока легких олефинов.
Поток тяжелых углеводородов, предпочтительно, включает, по меньшей мере, один тяжелый олефин, имеющий от 5 до 6 атомов углерода на молекулу. Кроме того, поток тяжелых углеводородов может быть получен фракционированием потока бензина, включая, но не ограничиваясь им, псеводоожиженный, каталитический крекинг-бензин, с целью, по меньшей мере, частичного удаления С5/С6-олефинового материала, который может быть использован в настоящем изобретении в качестве потока тяжелых углеводородов. Это обеспечивает желательное снижение содержания олефина в потоке бензина, пониженное RVP потока бензина (благодаря удалению C5-олефинов с высоким RVP) и повышенный выход дизельного топлива из С5/С6-олефинового материала, что, по всей вероятности, составит суть будущих регулирующих тенденций.
Было обнаружено, что введение потока легких олефинов в качестве совместного сырья, включающего, по меньшей мере, один легкий олефин, имеющий менее 5 атомов углерода на молекулу, в реакционную зону наряду с потоком тяжелых углеводородов неожиданно приводит к повышению процентного содержания по массе С11+ углеводородов в получаемых олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, по сравнению с процентным содержанием по массе С11+ углеводородов в получаемых олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, когда поток легких олефинов не вводят. Поток легких олефинов, предпочтительно, представляет собой соединение углеводорода, выбранное из группы, включающей пропилен, бутилен, изобутилен, а также сочетания любых двух и более указанных соединений.
Выходящий из реактора поток в соответствии с заявленным способом включает олигомеры, имеющие, по меньшей мере, 9 атомов углерода на молекулу. Исходное процентное содержание по массе С11+ углеводородов в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу ("олигомеры"), выходящего из реактора потока, определяют, представляя исходное процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах выходящего из реактора потока, когда нет совместного введения потока легких олефинов. Установленное исходное процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах выходящего из реактора потока, обычно составляет менее около 40 мас.%, более предпочтительно, менее около 35 мас.%, и наиболее предпочтительно, менее около 30 мас.%, исходя из общей массы олигомеров.
Совместно подаваемый поток легких олефинов может быть под контролем введен в реакционную зону, обеспечивая таким образом молярное отношение совместно подаваемого потока легких олефинов к потоку тяжелых углеводородов. Молярным отношением совместно подаваемого потока легких олефинов к потоку тяжелых углеводородов может быть любое отношение, способное повысить процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах выходящего из реактора потока, относительно установленного исходного процентного содержания по массе С11+ углеводородов, содержащихся в олигомерах выходящего из реактора потока, при отсутствии совместной подачи потока легких олефинов. Процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах выходящего из реактора потока, при совместной контролируемой подаче потока легких олефинов, предпочтительно, превышает около 40 мас.%, более предпочтительно, около 50 мас.%, и наиболее предпочтительно, 60 мас.%. Молярное соотношение совместно подаваемого потока легких олефинов и потока тяжелых углеводородов может находиться в интервале, составляющем приблизительно от 0,01:1 до 4:1, предпочтительно, приблизительно от 0,5:1 до 3:1, и наиболее предпочтительно, от 1:1 до 2:1.
Такое повышение процентного содержания по массе С11+ углеводородов, содержащихся в олигомерах, приводит к повышению цетанового числа С9+ материала после гидрогенизации, что проиллюстрировано в примерах.
Реакция олигомеризации может быть осуществлена в любой реакторной системе, которая, как известно специалистам в данной области, подходит для олигомеризации олефина в присутствии катализатора для олигомеризации. Типичные реакторные системы, применимые в настоящем изобретении, включают, но не ограничиваются ими, процессы периодического типа, систему с неподвижным слоем, систему с подвижным слоем и систему с псевдоожиженным слоем.
Любой из перечисленных способов имеет свои преимущества и недостатки, при этом специалисты в данной области могут выбрать наиболее подходящий способ для конкретного сырья и каталитической системы.
Реакцию олигомеризации, предпочтительно, осуществляют в зоне для олигомеризации, включающей каталитическую систему для олигомеризации в соответствии с настоящим изобретением, и в реакционных условиях, способствующих олигомеризации, по меньшей мере, части тяжелых олефинов потока тяжелых углеводородов, а также легких олефинов совместно подаваемого потока легких олефинов. Олигомеризация может быть необязательно осуществлена в присутствии водорода. Реакционная температура зоны олигомеризации обычно находится в интервале, составляющем приблизительно от 100°F (37,8°C) до 500°F (260°С), предпочтительно, приблизительно от 150°F (65,6°C) до 300°F (148,9°С), и наиболее предпочтительно, приблизительно от 200°F (93,3°C) до 260°F (126,7°С). Давление зоны олигомеризации достаточно, чтобы поддерживать реагенты в жидком виде. Контактное давление зоны олигомеризации обычно находится в интервале, составляющем приблизительно от 0 до 1000 ед. избыточного давления в фунтах на квадратный дюйм, предпочтительно, приблизительно от 50 до 500 ф/кв.дюйм(изб.), и наиболее предпочтительно, от 100 до 250 ф/кв.дюйм(изб.).
Скорость, при которой комбинация потока тяжелых углеводородов и потока легких олефинов ("комбинация"), подают в зону для олигомеризации, такова, чтобы обеспечить часовую объемную скорость массы ("WHSV") в интервале, составляющем приблизительно от 0,01 до 1000 ч-1. Термин "часовая объемная скорость массы" в данном описании означает числовое отношение скорости, при которой комбинацию загружают в зону для олигомеризации в фунтах в час, разделенных на фунты катализатора, присутствующего в зоне для олигомеризации, в которую подают комбинацию. Предпочтительная WHSV подачи комбинации в зону для олигомеризации составляет приблизительно от 0,25 до 250 ч-1, и наиболее предпочтительно, приблизительно от 0,5 ч-1 до 100 ч-1.
Выходящий из реактора поток может быть разделен в разделительной установке с получением верхнего потока, включающего С8-компоненты, первоначально включающие неолигомеризованные C5-олефины и некоторые легкие олефины (такие как пропилен и бутилены), и осадочного потока, включающего С9+ компоненты, первоначально содержащие С9+ олефины. Осадочный поток может быть затем обработан водой любым подходящим способом для получения дизельного потока хорошего качества (высокое цетановое число), применимого в качестве смеси дизельного сырья.
Верхний поток может быть алкилирован на любой подходящей установке для алкилирования, при этом количество получаемого изопентана снижается.
Нижеследующие примеры предназначены для дальнейшей иллюстрации данного изобретения и не должны рассматриваться как ограничивающие каким-либо образом его объем.
Пример I
Данный пример иллюстрирует получение катализаторов, которые затем применяют в качестве катализаторов в заявленном способе олигомеризации в соответствии с настоящим изобретением.
Катализатор А
91,8 г двуокиси кремния (сорт Davison G57) суспендируют в 500 мл дистиллированной воды. 31,7 г соли перфтороктансульфоновой кислоты (CeF17SO
Катализатор В
Катализатор В представляет собой катализатор, получаемый от E.I. DuPont de Nemours and Company с маркировкой катализатор Nation®, содержащий 13 мас.% перфорированной смолы полиалкилсульфоновой кислоты на двуокиси кремния.
Пример II
Данный пример иллюстрирует преимущества использования повышенного процентного содержания по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода в молекуле, выходящего из реактора потока и повышенного цетанового числа олигомеров, имеющих, по меньшей мере, 9 атомов углерода на молекулу, получаемые в результате совместного введения потока легких олефинов в процесс взаимодействия потока тяжелых углеводородов, включающего тяжелые олефины, с катализатором А или В из примера I.
В цикле 1 (контрольный) 9,55 г (22,7 мл объема) катализатора А из примера I помещают в стальной трубчатый реактор из нержавеющей стали (длина: около 18 дюймов, внутренний диаметр: около 0,5 дюйма). Стальную трубку реактора нагревают до температуры около 257°F. Давление в реакторе составляет около 100 ф/кв.дюйм(изб.). Поток сырья, включающий С5-олефины и не включающий С4-олефины, вводят в трубку реактора со скоростью, составляющей 29,4 мл/ч (19,1 г/ч), чтобы получить часовую объемную скорость жидкости, составляющую 1,3 ч-1 (WHSV - 2,0 ч-1). Термин "часовая объемная скорость жидкости" в данном описании означает числовое отношение скорости, при которой поток сырья загружают в трубку реактора в мл в час, на объем в мл катализатора, содержащегося в трубке реактора, в которую подают поток сырья. Продукт анализируют при помощи газового хроматографа. Результаты испытания, полученные в течение 7,5 ч на потоке, суммированы в табл.1.
В цикле 2 (заявленный) используют содержимое реактора из цикла 1. Стальную трубку реактора нагревают до температуры около 258°F. Давление в реакторе составляет около 100 ф/кв.дюйм(изб.). Поток сырья, включающий С4- и С5-олефины, вводят в трубку реактора со скоростью, составляющей 29,4 мл/ч, чтобы получить LHSV, равную 1,3 (WHSV - около 1,9 ч-1). Продукт анализируют при помощи газового хроматографа. Результаты испытания, полученные в течение 7,0 часов на потоке, суммированы в табл.1.
В цикле 3 (контрольный) 17,0 г катализатора В из примера I помещают в автоклав, снабженный планкой для перемешивания и мешалкой. Воздух, присутствующий в автоклаве, эвакуируют и вводят газ N2 до давления, равного 250 ф/кв.дюйм(изб.). Затем в автоклав загружают 30 г углеводородного сырья при скорости перемешивания, составляющей 1000 об/мин. Давление в автоклаве поддерживают на уровне 250 ф/кв.дюйм(изб.), а температура в реакторе после 30 мин взаимодействия составляет около 243°F. Продукт отбирают для анализа после 30 мин взаимодействия, и анализ осуществляют при помощи газового хроматографа. Полученные результаты цикла суммированы в табл.2.
Оставшийся продукт из контрольного цикла 3 подвергают гидрогенизации и разделяют на С9+ материал (дизельный) и C8-материал. Цетановое число С9+ материала определяют следующим образом.
Получают смесь, включающую:
6,8 об.% С9+ материала; и
93,2 об.% дизельного топлива, имеющего цетановое число, равное 39,5.
Цетановое число смеси, определяемое при помощи метода испытания ASTM D613.65, составляет 40,2. Цетановое число С9+ материала определяют следующим образом:
X = подсчитанное цетановое число С9+ материала = 49,8.
В цикле 4 (заявленный) 16,6 г катализатора В из примера 1 помещают в автоклав, снабженный планкой для перемешивания и мешалкой. Воздух, присутствующий в автоклаве, эвакуируют и вводят газ N2 до давления, равного 250 ф/кв.дюйм(изб.). Затем в автоклав загружают 30 г углеводородного сырья при скорости перемешивания, составляющей 1000 об/мин. Давление в автоклаве поддерживают на уровне 250 ф/кв.дюйм(изб.), а температура в реакторе после 30,0 мин взаимодействия составляет около 257°F. Продукт отбирают для анализа после 30,0 мин взаимодействия, и анализ осуществляют при помощи газового хроматографа.
Полученные результаты суммированы в табл.2.
Оставшийся продукт из заявленного цикла 4 подвергают гидрогенизации и разделяют на С9+ материал (дизельный) и С8-материал.
Цетановое число С9+ материала определяют следующим образом.
Получают смесь, включающую 3,8 об.% С9+ материала; и
96,2 об.% дизельного топлива, имеющего цетановое число, равное 39,5.
Цетановое число смеси, определяемое при помощи методы испытания ASTM D613.65, составляет 41,7. Цетановое число С9+ материала определяют следующим образом:
X = подсчитанное цетановое число С9+ материала = 97,4.
Данные, представленные в табл.1, показывают, что добавление потока, содержащего С4-олефины, к потоку, содержащему С5-олефины, в процессе олигомеризации приводит к повышенному процентному содержанию по массе С11+ углеводородов в С9+ материале (т.е. олигомеры, имеющие более 9 атомов углерода на молекулу) продукта, по сравнению с процентным содержанием по массе С11+ углеводородов в С9+ материале продукта олигомеризации С5-олефинов без добавления С4-олефинов.
Заявленный цикл 2 демонстрирует 143% повышение процентного содержания по массе С11+ углеводородов в С9+ материале продукта по сравнению с контрольным циклом 1.
Данные, представленные в табл.2, показывают, что добавление С3/С4-олефинов к потоку, содержащему С5/С6-олефины, приводит к повышенной конверсии С6-олефинов и повышению цетанового числа С9+ материала, отделенного от С6+ материала продукта, по сравнению с конверсией С6-олефинов и цетановым числом С9+ материала продукта олигомеризации С5/С6-олефинов без добавления С3/С4-олефинов.
Заявленный цикл 4 демонстрирует 27,3% повышение конверсии С6-олефинов и 95,6% повышение цетанового числа С9+ материала продукта по сравнению с контрольным циклом 3. Повышение цетанового числа, вероятно, происходит благодаря более высокому процентному содержанию по массе С11+ углеводородов в С9+ материале продукта из заявленного цикла 4 по сравнению с процентным содержанием по массе С11+ углеводородов в С9+ материале продукта из контрольного цикла 3.
Из данных, приведенных в табл.1 и 2, очевидно, что заявленный способ приводит к олигомеризации олефинов до углеводородов, пригодных для дизельного топлива, и что процентное содержание по массе С11+ углеводородов, содержащихся в олигомерах, имеющих, по меньшей мере, 9 атомов углерода на молекулу, в выходящем из реактора потоке, а также цетановое число олигомеров увеличиваются по сравнению с процентным содержанием по массе С11+ углеводородов и цетановым числом олигомеров при отсутствии контролируемой подачи легкого олефина, имеющего менее 5 атомов углерода на молекулу, в реактор для олигомеризации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА С ПОМОЩЬЮ ОЛИГОМЕРИЗАЦИИ БЕНЗИНА | 2013 |
|
RU2638933C2 |
СПОСОБ ОЛИГОМЕРИЗАЦИИ БЕНЗИНА БЕЗ ДОПОЛНИТЕЛЬНОГО ОБЛАГОРАЖИВАНИЯ | 2013 |
|
RU2639160C2 |
СПОСОБ ОЛИГОМЕРИЗАЦИИ ЛЕГКИХ ОЛЕФИНОВ, ВКЛЮЧАЯ ПЕНТЕНЫ | 2013 |
|
RU2674024C2 |
УСТРОЙСТВО И СПОСОБ ПОЛУЧЕНИЯ ТЕТРАМЕРА | 2011 |
|
RU2499787C1 |
ОЛИГОМЕРИЗАЦИЯ ОЛЕФИНОВ ДЛЯ ИЗГОТОВЛЕНИЯ СИНТЕТИЧЕСКОГО ТОПЛИВА | 2013 |
|
RU2642057C2 |
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДНОЙ ЗАГРУЗКИ | 2003 |
|
RU2294916C2 |
ОДНОСТАДИЙНЫЙ КАТАЛИТИЧЕСКИЙ СПОСОБ КОНВЕРСИИ Н-ПАРАФИНОВ И НАФТЫ В УГЛЕВОДОРОДЫ ДИЗЕЛЬНОГО ИНТЕРВАЛА | 2013 |
|
RU2648239C2 |
СПОСОБ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ ВО ФРАКЦИЮ, ИМЕЮЩУЮ УЛУЧШЕННОЕ ОКТАНОВОЕ ЧИСЛО, И ФРАКЦИЮ С ВЫСОКИМ ЦЕТАНОВЫМ ЧИСЛОМ | 2003 |
|
RU2317317C2 |
СПОСОБ МНОГОСТАДИЙНОЙ КОНВЕРСИИ ЗАГРУЗКИ, СОДЕРЖАЩЕЙ ОЛЕФИНЫ С ЧЕТЫРЬМЯ, ПЯТЬЮ ИЛИ БОЛЕЕ АТОМАМИ УГЛЕРОДА, С ЦЕЛЬЮ ПОЛУЧЕНИЯ ПРОПИЛЕНА (ВАРИАНТЫ) | 2003 |
|
RU2299191C2 |
СПОСОБ КОНВЕРСИИ ТЯЖЕЛОЙ ФРАКЦИИ В СРЕДНИЙ ДИСТИЛЛЯТ | 2011 |
|
RU2563655C2 |
Использование: нефтехимия. Сущность: по меньшей мере, один тяжелый олефин, имеющий, по меньшей мере, 5 атомов углерода на молекулу подвергают олигомеризации в присутствии, по меньшей мере, одного совместно подаваемого легкого олефина, имеющего менее 5 атомов углерода на молекулу. Присутствие легкого олефина приводит к повышенной конверсии С6=(С6-олефин), присутствующего в качестве одного из, по меньшей мере, одного тяжелого олефина, повышенному процентному содержанию по массе С11+ углеводородов в C9+ материале продукта и повышенному цетановому числу C9+ материала продукта по сравнению с олигомеризацией тяжелого олефина без совместно подаваемого легкого олефина. 10 з.п. ф-лы, 2 табл.
CnXyF(2n+1-y) SO3H;
CnXyF(2n-у) (SO3H)2,
в которых X представляет водород, хлор, бром или йод;
n равно величине от 1 до 20;
у равен величине от 0 до 39,
или сочетание любых двух и более указанных соединений.
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором | 1915 |
|
SU59A1 |
Авторы
Даты
2004-08-20—Публикация
2000-09-13—Подача