Изобретение относится к энергетическому машиностроению а именно к производству поршневых двигателей внутреннего сгорания, и может быть использованно в конструкции цилиндро-поршневой группы в двигателях с проточной системой охлаждения.
Известны конструкции с теплозащитными покрытиями на внешней поверхности, обеспечивающими уменьшение теплоотвода в охлаждающую среду через цилиндровую втулку /1-2/. Однако эти решения неприемлимы для цилиндров малоразмерных дизелей (ч 8,5/11 и ч 9,5/11), так как предусматривают увеличение наружного диаметра втулки, и она при этом не вписывается в габариты блок-картера.
Для преодоления такого конструктивного барьера предложенно наносить островковое теплозащитное покрытие, располагаемое в шахматном порядке на водоохлаждаемой поверхности втулки в углублениях, специально выфрезировываемых на поверхности втулки на глубину 0,5 мм /3/.
Приняв за основу это конструктивное решение, были продолжены исследования по подбору оптимального состава теплозащитного покрытия, обеспечивающего режим работы "горячего" двигателя.
Известны составы теплозащитных покрытий на деталях ДВС, содержащие окислы металлов (Al2O3, TiO2, ZrO2, MgO, AI2 TiO5 и др.) /4,5/. Априорно известно, что из рассматриваемых материалов оксид циркония имеет наименьшую теплопроводность, поэтому подробные исследования по разработке теплозащитных покрытий для втулок цилиндров рассматриваемых дизелей были проведены с материалами на основе этого оксида с добавками чистых металлов (AI, Ni, Ti) в качестве связующего. Содержание связующего изменяли в пределах 5...11% (по массе). Как показано в работе /4/, такое количество связующих оптимально с точки зрения сохранения высокой теплоизолирующей способности оксидных покрытий.
Теплопроводность измеряли сравнительным методом на стандартных образцах, на которые наносили исследуемые покрытия толщиной 0,5±0,01 мм плазменным напылением в воздушной атмосфере. Объемная пористость плазменных покрытий не превышала 5...7%.
Результаты измерения теплопроводности изученных систем приведены в таблице, откуда видно, что оксидные покрытия, имеющие в качестве связующего титан, обладают наименьшей теплопроводностью по сравнению с покрытиями, содержащими алюминий или никель. Это связано с тем, что сам титан имеет меньшую теплопроводность по сравнению с никелем и алюминием.
Техническим результатом заявленного изобретения является снижение теплопроводности теплозащитного покрытия. Достигается это тем, что теплозащитное покрытие цилиндровой втулки составлено из диоксида циркония с 5%-ой примесью титана в качестве связующего.
Из исследованных покрытий наиболее оптимально (с точки зрения минимизации теплопроводности) покрытие состава (ZrO2+5%Тi) с коэффициентом теплопроводности 0,43 Вт/(м·°С).
Это покрытие испытано в натурных условиях, для чего были подготовлены втулки цилиндров дизеля 4ч 9,5/11, на которые наносили покрытие вышеуказанного состава толщиной 1,0±0,1 мм с шахматным расположением водоомываемой поверхности.
При комплексных натурных испытаниях контролировали температуру зеркала втулки цилиндра, время запуска двигателя при нормальных и отрицательных температурах внешней среды, удельный расход топлива.
Измерения показали, что пусковые характеристики дизеля с термоизолированной втулкой значительно лучше, чем у штатных дизелей, температура зеркала втулки возросла на 20...25°С, удельный расход топлива снизился на 15,9 г/(л.с.хЧ).
Источники информации
1. Исаченко В.П. и др. Теплопередача. - М.: Энергия, 2-е изд.. 1969.
2. Заявка Франции №2520809, кл. F 02 F 1/16, 1983.
3. Дорохов А.Ф., Абачараев И.М., Абачараев М.М. Цилиндровая втулка с теплозащитным покрытием. - Патент №2079685, 1997.
4. Лапчук В.А. Расчетное исследование влияния теплоизоляции на топливную экономичность дизеля 6ЧН 21/21. - Двигателестроение. 1987, №10, с.44.
5. Абачараев М,М., Хаппалаев А.Ю. Защитные покрытия в промышленности. - Махачкала: Дагкнигоиздат, 187. - 108 с.
название | год | авторы | номер документа |
---|---|---|---|
ЦИЛИНДРОВАЯ ВТУЛКА С ТЕПЛОЗАЩИТНЫМ ПОКРЫТИЕМ | 1994 |
|
RU2079685C1 |
Способ нанесения теплозащитного покрытия с двойным керамическим теплобарьерным слоем | 2022 |
|
RU2791046C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2013 |
|
RU2521780C1 |
ВЫСОКОТЕМПЕРАТУРНОЕ ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ | 2012 |
|
RU2586376C2 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2020 |
|
RU2751499C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2011 |
|
RU2455385C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2010 |
|
RU2425906C1 |
ПОРОШКОВЫЙ МАТЕРИАЛ ДЛЯ ГАЗОТЕРМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ | 2016 |
|
RU2634864C1 |
МАТЕРИАЛ КЕРАМИЧЕСКОГО СЛОЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ | 2013 |
|
RU2556248C1 |
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ | 2021 |
|
RU2766627C1 |
Изобретение предназначено для производства поршневых двигателей внутреннего сгорания. Техническим результатом изобретения является снижение теплопроводности теплозащитного покрытия. Теплозащитное покрытие цилиндровой втулки составлено из диоксида циркония с 5%-ой примесью титана в качестве связующего. 1 табл.
Теплозащитное покрытие цилиндровой втулки, отличающееся тем, что оно составлено из диоксида циркония с 5%-ой примесью титана в качестве связующего.
ЦИЛИНДРОВАЯ ВТУЛКА С ТЕПЛОЗАЩИТНЫМ ПОКРЫТИЕМ | 1994 |
|
RU2079685C1 |
ГИЛЬЗА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 0 |
|
SU248380A1 |
SU 14202123 A, 30.08.1988 | |||
SU 1287687 A, 10.01.2000 | |||
САМОИНАКТИВИРУЮЩИЕСЯ АДЕНОВИРУСЫ-ПОМОЩНИКИ ДЛЯ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ АДЕНОВИРУСОВ С ВЫСОКОЙ ЕМКОСТЬЮ | 2009 |
|
RU2520809C2 |
Авторы
Даты
2004-09-20—Публикация
2000-02-29—Подача