СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ Российский патент 2014 года по МПК C23C4/04 C23C24/04 

Описание патента на изобретение RU2521780C1

Изобретение относится к области химико-термической обработки металлов и сплавов и может быть использовано в машиностроении для повышения износостойкости деталей цилиндропоршневой группы автотракторной техники.

Известны способы нанесения конденсационных и диффузионных покрытий, каждый из которых имеет свои разновидности (см. Коломыцев П.Т. Высокотемпературные защитные покрытия для никелевых сплавов. М.: Металлургия, 1991 г., 236 с.).

Теплозащитные покрытия характеризуются более низкой теплопроводностью, но растрескиваются и отслаиваются при теплосменах под действием термомеханических нагрузок.

Для обеспечения работоспособности деталей цилиндропоршневой группы эффективно применяются электролитические хромовые покрытия и теплозащитные покрытия, полученные методом электронно-лучевого напыления или плазменного осаждения на воздухе или в вакууме (см. Повышение износостойкости деталей двигателей внутреннего сгорания. М.М.Хрущев. - М.: Машиностроение, 1972 г.).

Электролитические хромовые покрытия в основном удовлетворяют указанным требованиям действующих производств. Твердость указанных покрытий находится на уровне 900-1000 HV, адгезионная прочность - до 700 кг/см2, сравнительно низкий коэффициент трения, удовлетворительная прирабатываемость и масловпитываемость, высокая теплопроводность.

Однако из-за невозможности нанесения электролитических хромовых осадков более 200 мкм ресурс их порой ниже ресурса двигателей до 1-го ремонта. А повышение твердости покрытия снижает прирабатываемость кольца в гильзе и требует высокой точности изготовления колец. Из-за недостаточной толщины покрытия последующая обработка под геометрию гильзы достаточно затруднительна и трудоемка.

Электролитический хром неудовлетворительно работает на трение и изнашивание при высоких температурах из-за резкого снижения твердости (при 300°C твердость составляет 800 кг/мм2, а при 700°C - 200 кг/мм2). Так как полиморфного превращения в хромовых осадках нет, то термообработкой твердость покрытий не повышается. Если покрытие имеет недостаточную пористость, то при температуре свыше 300°C твердый хром в условиях неудовлетворительной смазки неработоспособен - возникают прижоги, задиры. Локальное повышение температуры приводит к интенсивному размягчению, схватыванию, скалыванию покрытий. В процессе наработки пористый слой значительно разупрочняется из-за усталостного изнашивания в условиях повышенных температур. Так как температурный коэффициент линейного расширения (ТКЛР) хромовых покрытий ниже материала кольца (чугун, сталь), то в покрытии могут возникать растягивающие напряжения, способствующие термоциклическому и коррозионному растрескиванию покрытий. В дизельных двигателях, в результате присутствия в топливе серы, возможно образование серной кислоты, что может привести к образованию гальванической пары при контакте с цилиндром и сульфидной коррозии.

Известен способ нанесения хромового покрытия на стальные детали (патент на изобретение 2269608, опубл. 10.02.2006 г, бюл. №4). В данном способе не повышена износостойкость покрытия, а увеличена адгезия покрытия и производительность.

Известен способ нанесения высокотемпературного композиционного материала для уплотнительного покрытия (патент на изобретение РФ №2303649, опубл. 27.07.2007 г., бюл. №21), содержащий диоксид циркония, стабилизированный оксидом иттрия с добавлением нитрида бора, и нихромовое волокно. Данное покрытие повышает термостойкость при высоких температурах (1000°C), что не является необходимым при работе деталей автотракторной техники.

Известно жаростойкое металлокерамическое покрытие (патент на изобретение РФ №2309194, опубл. 20.06.2006 г., бюл. №30) с чередующимися жаростойкими и жаропрочными слоями металлокерамики для противодействия ударно-термическому воздействию, но очень дорогое и не эффективное при работе на трение и изнашивание.

Известен способ нанесения комбинированного жаростойкого покрытия на лопатки турбин, включающий хромоалитирование в порошковой смеси с последующей термовакуумной обработкой, после чего проводят электронно-лучевое напыление слоя керамики ZrO2 - 8Y2O3 на входные кромки лопаток с последующим отжигом для окончательного формирования покрытия (см. патент на изобретение РФ №2272089, кл. С23С 28/00, опубл. 20.03.2006 г., бюл. №8), состав которого соответствует условиям работы наружной поверхности рабочих лопаток ГТД и неприемлем для деталей цилиндропоршневой группы автотракторной техники.

Известен способ получения эрозионностойких теплозащитных покрытий на основе композиции ZrO2 и NiCr, включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50-80 вес.% диоксида циркония и 50-20 вес.% нихрома (патент на изобретение РФ №2283363, опубл. 10.09.2006 г., бюл. №25). Изобретение обеспечивает повышение эрозионностойкости, термостойкости и адгезионной прочности покрытия за счет состава и создания зоны фазового перехода. Покрытие, получаемое таким образом, неудовлетворительно работает на трение и изнашивание, имеет недостаточную твердость, неудовлетворительную прирабатываемость.

Известен способ нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали (патент на изобретение РФ №2455385, опубл. 10.07.2012 г., бюл. №19), включающий абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, плазменное напыление керметной композиции из механической порошковой смеси, содержащей диоксид циркония со стабилизирующей добавкой, нихром, карбид титана и карбид бора при определенном соотношении компонентов, используемое для восстановления износостойкости вальцов мукомольных мельниц. В данном способе покрытие имеет высокую твердость, износостойкость, а предложенный состав покрытия не позволяет технологически наносить пластичные покрытия большой толщины.

Наиболее близким техническим решением является способ нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали, включающий плазменное напыление подслоя состава: Co-Cr-Al-Y и последующее напыление керметной композиции из механической порошковой смеси состава 20-50 вес.% нихрома, 50-20 вес.% диоксида циркония со стабилизирующей добавкой, 20 вес.% карбида хрома, 10 вес.% карбида вольфрама. При этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид иттрия, содержание которого составляет 4-7 вес.% (патент на изобретение РФ №2425906, опубл. 10.08.2011 г., бюл. №22), принятого за прототип. Изобретение обеспечивает повышение стойкости покрытия к изнашиванию при трении, твердости покрытия, термостойкости, адгезии покрытия к сплаву основы.

Покрытие, получаемое таким образом, удовлетворительно работает на трение и изнашивание, имеет недостаточную твердость и пластичность. Введение в механическую порошковую смесь карбида хрома и карбида вольфрама повышает твердость и износостойкость покрытия незначительно, при этом рост их концентраций приводит к сколам покрытия, как при нанесении покрытия, так и его обработке, неравномерности толщины покрытия, выкрошиванию частиц в процессе эксплуатации, невозможности нанесения покрытий толщиной более 200 мкм, что является необходимым условием для повышения износостойкости деталей цилиндропоршневой группы автотракторной техники.

Для повышения стойкости покрытия к изнашиванию при трении необходимо повысить твердость, износостойкость, пластичность покрытия, обеспечить равномерность толщины покрытия при одновременном ее увеличении.

Технической задачей изобретения является повышение износостойкости и долговечности деталей цилиндропоршневой группы автотракторной техники за счет применения теплозащитных износостойких покрытий (ТЗП).

Сущность изобретения заключается в том, что в способе нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали, включающем плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление керметной композиции из механической порошковой смеси, содержащей диоксид циркония, стабилизированный оксидом иттрия, нихром, карбид хрома, карбид вольфрама, перед плазменным напылением проводят абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, а напыление осуществляют из механической порошковой смеси, дополнительно содержащей никельалюминий и никельтитан, при следующем соотношении компонентов, вес.%: нихром 10-20, диоксид циркония 30-20, никельалюминий 30-40, никельтитан 20-10, карбид хрома 5, карбид вольфрама 5.

Технический результат достигается за счет нового действия и нового состава керметной композиции при нанесении покрытий, а именно абразивно-струйной обработки деталей карбидом кремния с размером частиц 1,5 мм перед плазменным напылением, повышающей адгезионную прочность покрытия и сплава основы, введения в состав керметной смеси никельалюминия для повышения пластичности и никельтитана для повышения прочности, твердости и износостойкости покрытия. Процентное содержание нихрома и диоксида циркония снижена, но достаточна для обеспечения термостойкости покрытия в пределах рабочих температур 20-400°C, исключения полиморфных превращений при забросах температур, необходимой пористости для обеспечения характеристик смачиваемости деталей маслом в зоне трибосопряжений. Введение в состав механической смеси никельалюминия повысило пластичность покрытия, обеспечивает равномерность покрытия по толщине с возможностью напыления покрытий до 500 мкм. Содержание карбида хрома и карбида вольфрама снижена до 5 мас.%, так как никельтитан более эффективен для повышения прочности, твердости и износостойкости покрытия. Процентное содержание в вес.% никельалюминия 30-40, никель-титана 20-10, карбида хрома 5, карбида вольфрама 5 оптимально для прочностных и пластичных свойств покрытия, что позволяет покрытию иметь как высокую износостойкость, так и обрабатываемость изделия после нанесения покрытия (таблица 1).

Таблица 1 Характеристики состояния, микротвердости, коэффициента пластичности покрытий Материал (покрытие) Состояние Микротвердость, МПа Коэффициент пластичности Чугун высокопрочный исходное 3,0-3,5 0,880-0,890 после трения 6,0-8,1 0,820-0,870 Хромовое гальваническое покрытие исходное 6,0-8,0 0,700-0,705 после трения 9,0-11,3 0,670-0,680 20 вес.% NiCr - 50 вес % ZrO2-Y2O3 - 20% вес.% CrC - 10 вес.% WC (прототип) исходное 2,3-2,6 0,92-1,09 после трения 4,6-4,9 0,87-0,88 10 вес.% NiCr - 30 вес.% ZrO2 - Y2O3 - 30 вес.% NiAl - 20 вес.% NiTi - 5 вес.% CrC - 5 вес.% WC (заявляемый способ) исходное 4,78-6,0 0,93-0,97 после трения 6,2-8,4 0,81-0,82 10 вес.% NiCr - 25 вес.% ZrO2 - Y2O3 - 50 вес.% NiAl - 5 вес.% NiTi - 5 вес.% CrC - 5 вес.% WC исходное 2,8-2,9 0,90-0,98 после трения 4,9-5,7 0,76-0,79 10 вес.% NiCr - 30 вес.% ZrO2 - Y2O3 - 20 вес.% NiAl - 30 вес.% NiTi - 5 вес.% CrC - 5 вес.% WC исходное 5,7-7,8 0,63-0,69 после трения 8,0-10,4 0,62-0,67 20 вес.% NiCr - 30 вес.% ZrO2 - Y2O3 - 30 вес.% NiAl - 20 вес.% NiTi исходное 3,2-3,4 0,884-0,92 после трения 5,6-6,2 0,84-0,86

Повышение данных концентраций приводит к повышению твердости покрытия, снижению пластичности, сколам покрытия при нанесении и обработке.

Снижение процентного содержания никельтитана, карбида хрома и карбида вольфрама, исключение из состава смеси карбида хрома и карбида вольфрама, приводит к снижению микротвердости покрытия и повышению интенсивности изнашивания.

На фиг.1 приведены поршневые кольца автотракторной техники с теплозащитным покрытием.

На фиг.2 приведена микроструктура теплозащитного износостойкого покрытия с подслоем Co-Cr-Al-Y.

На фиг.3 приведена микроструктура теплозащитного износостойкого покрытия.

На фиг.4 приведена зависимость адгезионной прочности покрытия со сплавом основы от состава подслоя.

На фиг.5 приведена зависимость интенсивности изнашивания от состава покрытия.

На фиг.6 приведена зависимость адгезии масла к покрытию от состава керметной смеси.

Пример конкретного выполнения (оптимальный)

Предлагаемый способ нанесения теплозащитного износостойкого покрытия реализован следующим способом. Покрытие наносили на компрессионные и маслосъемные поршневые кольца автотракторной техники. Материал поршневых колец - чугун марки СЧ (серый) или ВЧ (высокопрочный) с твердостью 96-112НВ для серого или 100-112НВ для высокопрочного чугуна с микроструктурой в соответствии со шкалами: Г1, Г2 … для графита, П1, П2 … для перлита (ГОСТ 3443-77). Маслосъемное кольцо стальное пластинчатое. Кольцевые диски изготовлены из высокоуглеродистой стальной (сталь У8А) ленты размером 0,7-4,0 мм. Для напыления использовалась установка воздушно-плазменного напыления типа УПН-40 в составе источника питания АПР-404, плазмотрона ПН-В1, дозатора подачи Д-40(М). Напыление осуществлялось в камере, снабженной вращателем с системой центросмещения, и устройством перемещения плазмотрона. Перед напылением покрытий проводилась абразивно-струйная обработка карбидом кремния с размером частиц 1,5 мм. Подслой Co-Cr-Al-Y наносили аргоновым плазмотроном толщиной 30-40 мкм. Использовали порошок диоксида циркония грануляцией 10-40 мкм и порошки нихрома, никельалюминия, никельтитана, карбида хрома и вольфрама с размером частиц 40-100 мкм. Напыление покрытий по прототипу и предлагаемому способу осуществляли воздушным плазмотроном ПН-В1 при I=190-200 A, U=200 В. Толщина покрытий 150-200 мкм. Данные по толщинам слоев покрытия определяли на оптическом микроскопе «Neo-phot-21».

Фазовый анализ покрытий: пористось - 10%, соотношение керамика - металл 34-56% в зависимости от состава смеси.

Прочность сцепления износостойкого покрытия с основным металлом оценивалась согласно ГОСТ 621-87. Испытания на изнашивание проводились на установке типа Армслера (машина трения МТ-2) при нагрузке, исключающий задир (р=3.42 МПа; V=2.5 м/с; t=10 часов). Линейный износ образцов определяли на оптиметре по разности его показаний до и после испытаний. Интенсивность изнашивания определяли как отношение линейного износа к пройденному пути образцами за время испытаний.

Для определения адгезии смазочного материала основывались на замерах давления растекания капли масла по образцу. Маслоудерживающая способность покрытий характеризовалась работой адгезии смазки, полученной суммированием давления растекания и удвоенной поверхностной энергии масла. Для моторного масла его поверхностная энергия (натяжение) принята равной 30,3·10-3 Н/м.

Химический состав определялся микрорентгеноспектральным способом на электронном микроскопе «Stereoscan - S-600» с микроанализатором «Link».

Проведенные сравнительные испытания образцов с покрытиями показали преимущество предлагаемого покрытия по адгезионной прочности покрытия со сплавом основы (фиг.4), его износостойкости (фиг.5). Снижение адгезии масла разработанного покрытия по сравнению с прототипом не происходит, так как 10% пористость покрытия обеспечивает достаточную масловпитываемость (фиг.6).

Комплект поршневых колец с нанесенными покрытиями, с геометрическими размерами деталей в соответствии ГОСТ, ТУ после их обработки на заводе поршневых колец «СТАПРИ» г.Ставрополь были установлены на двигатель Д-240 для проведения стендовых испытаний.

Средняя величина компрессии в цилиндрах с кольцами, имеющими предлагаемое металлокерамическое покрытие, в начале обкатки составила 8.97 кгс/см2, а в контрольных цилиндрах с серийными кольцами - 8.83 кгс/см2, в цилиндрах с кольцами, имеющими металлокерамическое покрытие по прототипу, - 8.87 кгс/см2. Среднее падение момента двигателя при отключении цилиндра с кольцами, имеющими предлагаемое металлокерамическое покрытие, - 47.5 н.м., при отключении цилиндра с серийными кольцами - 90 н.м., при отключении цилиндра с кольцами, имеющими металлокерамическое покрытие по прототипу, - 56 н.м., т.е. в первом случае момент уменьшается на 13.5%, во втором - на 25.7%, а в третьем - на 16%.

Сила трения поршневого кольца измерялась динамометром при протаскивании кольца через гильзу двигателя. В опытах с сухими (обезжиренными) кольцами и гильзой сила трения составила: для серийного кольца с гальваническим покрытием - 12-17 Н; для кольца с предлагаемым металлокерамическим покрытием - 7-8 Н; для кольца с металлокерамическим покрытием по прототипу - 8-9 Н. В опытах с кольцами, смазанными моторным маслом, и гильзой сила трения составила: для серийного кольца с гальваническим покрытием - 10-12 Н; для колец с металлокерамическими покрытиями - 5-6 Н.

Плазменные покрытия снижают силу трения между кольцом и гильзой как в обезжиренном состоянии за счет снижения контактной площади при трении, так и при смазке деталей, обладая повышенными значениями масловпитываемости.

Использование способа наиболее эффективно для деталей цилиндропоршневой группы двигателей автотракторной техники в связи с их решающим влиянием на ресурс.

Похожие патенты RU2521780C1

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2020
  • Панков Владимир Петрович
  • Ковалев Вячеслав Данилович
  • Панков Денис Владимирович
  • Румянцев Сергей Васильевич
  • Медведев Валерий Иванович
  • Баженов Анатолий Вячеславович
  • Табырца Владимир Иванович
RU2751499C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2010
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Руднев Олег Леонидович
  • Лебеденко Олег Станиславович
RU2425906C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2021
  • Панков Владимир Петрович
  • Румянцев Сергей Васильевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Головасичева Таисия Витальевна
  • Степанова Виктория Владимировна
  • Обухова Софья Евгеньевна
  • Степанова Марина Валерьевна
  • Пустовит Даниил Олегович
RU2766627C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2022
  • Панков Владимир Петрович
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Горобчук Александр Романович
  • Швецов Алексей Алексеевич
  • Букаткин Рустем Николаевич
  • Рубцов Николай Романович
  • Степанова Марина Валерьевна
  • Шрамко Дарья Ивановна
RU2780616C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2011
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
  • Кабаков Олег Юрьевич
  • Соловьев Вячеслав Александрович
  • Соболев Игорь Алексеевич
RU2455385C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ НА УГЛЕРОДНЫЕ ВОЛОКНА И ТКАНИ 2013
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Соловьев Вячеслав Александрович
  • Скребцова Юлия Викторовна
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
RU2511146C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ НА УГЛЕРОДНЫЕ ВОЛОКНА И ТКАНИ 2020
  • Панков Владимир Петрович
  • Ковалев Вячеслав Данилович
  • Панков Денис Владимирович
  • Румянцев Сергей Васильевич
  • Медведев Валерий Иванович
  • Баженов Анатолий Вячеславович
  • Табырца Владимир Иванович
RU2757827C1
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННО СТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ 2003
  • Сайгин Владимир Валентинович
  • Воеводин Вячеслав Петрович
  • Зарубова Наталья Ивановна
  • Заев Эдуард Федорович
  • Кольцов Владимир Иванович
  • Курындин Анатолий Петрович
  • Педан Сергей Владимирович
  • Самороковский Федор Васильевич
  • Чурсин Игорь Германович
RU2283363C2
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ 2012
  • Сайгин Владимир Валентинович
  • Сафронов Александр Викторович
  • Тишина Галина Николаевна
  • Полежаева Екатерина Михайловна
RU2499078C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ СИСТЕМЫ "ТИТАН-ДИОКСИД ТИТАНА" 2023
  • Петров Сергей Николаевич
  • Бобкова Татьяна Игоревна
  • Улин Игорь Всеволодович
  • Гошкодеря Михаил Евгеньевич
  • Сердюк Никита Александрович
RU2823208C1

Иллюстрации к изобретению RU 2 521 780 C1

Реферат патента 2014 года СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ

Изобретение относится к области металлургии, в частности к способам получения теплозащитных износостойких покрытий на деталях из чугуна или стали. Проводят абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, осуществляют плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление керметной композиции из порошковой смеси, содержащей компоненты, при следующем соотношении, вес.%: нихром 10-20, диоксид циркония, стабилизированный оксидом иттрия, 30-20, никельалюминий 30-40, никельтитан 20-10, карбид хрома 5, карбид вольфрама 5. Обеспечивается повышение стойкости покрытия к изнашиванию при трении, твердости покрытия, термостойкости и адгезии покрытия к сплаву основы.6 ил., табл. 1, пр. 1.

Формула изобретения RU 2 521 780 C1

Способ нанесения теплозащитного износостойкого покрытия на детали из чугуна или стали, включающий плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление из порошковой смеси, содержащей диоксид циркония, стабилизированный оксидом иттрия, нихром, карбид хрома и карбид вольфрама, отличающийся тем, что перед плазменным напылением проводят абразивно-струйную обработку карбидом кремния с размером частиц 1,5 мм, а напыление керметной композиции осуществляют из порошковой смеси, дополнительно содержащей никельалюминий и никельтитан, при следующем соотношении компонентов, вес.%: нихром 10-20, диоксид циркония, стабилизированный оксидом иттрия, 30-20, никельалюминий 30-40, никельтитан 20-10, карбид хрома 5, карбид вольфрама 5.

Документы, цитированные в отчете о поиске Патент 2014 года RU2521780C1

СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2010
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Руднев Олег Леонидович
  • Лебеденко Олег Станиславович
RU2425906C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2011
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
  • Кабаков Олег Юрьевич
  • Соловьев Вячеслав Александрович
  • Соболев Игорь Алексеевич
RU2455385C1
Способ восстановления изношенных шарикоподшипников 1935
  • Доценко Н.В.
SU44776A1
US 20070157525 A1, 12.07.2007
Система автоматизации исследований 1980
  • Григорьев Глеб Николаевич
  • Домарацкий Сергей Николаевич
  • Зудин Олег Сергеевич
  • Котик Игорь Павлович
  • Куклин Герман Николаевич
  • Лиснянский Борис Лазаревич
  • Новиков Александр Александрович
  • Попенко Николай Васильевич
  • Ситников Леонид Семенович
  • Шадрин Александр Борисович
  • Ааринен Рейно
  • Вайнио Олли
  • Кауппинен Сакари
  • Лааксонен Осмо
  • Линдфорс Илпо
  • Тюрвяйнен Марьятта
SU900287A1

RU 2 521 780 C1

Авторы

Панков Владимир Петрович

Жидков Владимир Евдокимович

Ковалев Вячеслав Данилович

Коломыцев Петр Тимофеевич

Панков Денис Владимирович

Баженов Анатолий Вячеславович

Соловьев Вячеслав Александрович

Соболев Игорь Алексеевич

Даты

2014-07-10Публикация

2013-02-04Подача