СПОСОБ ИДЕНТИФИКАЦИИ ГЕННЫХ МУТАЦИЙ И ПОЛИМОРФИЗМОВ Российский патент 2004 года по МПК C12Q1/68 

Описание патента на изобретение RU2240350C1

Изобретение относится к области медицины, в частности к молекулярной диагностике, молекулярной медицинской генетике, молекулярной онкологии.

Аллель-специфическая полимеразная цепная реакция (ПЦР) является одним из методов прямой детекции известных точковых мутаций и однонуклеотидных полиморфизмов. В основе метода лежит неспособность Taq ДНК-полимеразы к амплификации фрагмента при наличии несоответствия (mismatch) между вариабельным нуклеотидом на матричной ДНК и 3'-концом одного из олигопраймеров (Newton C.R. et al., 1989; Bottema C.D.K. et al., 1990).

Однако при субоптимальных условиях ПЦР зачастую происходит амплификация фрагмента даже в случае подобного несоответствия. Это обстоятельство весьма существенно ограничивает применение аллель-специфической ПЦР (Malcolm E.K. et al., 2000).

Известны следующие способы увеличения достоверности аллель-специфической ПЦР (Sarkar G. et al.,1989; Sommer S.S. et al.,1992):

1) повышение температуры отжига праймеров;

2) снижение количества циклов ПЦР;

3) понижение концентрации ключевых компонентов ПЦР (хлорида магния, нуклеотидов, ДНК-полимеразы, праймеров, исходной матрицы ДНК);

4) добавление в реакцию веществ, неселективно повышающих специфичность ПЦР, так называемых “энхансеров специфичности”: глицерол, тритон Х-100, формамид, диметилсульфоксид и др.;

5) добавление специфичного, но не способного к элонгации праймера, содержащего на 3'-конце дидеоксинуклеотид (ddNTP) (Orou A. et al., 1995).

Наиболее близким к предлагаемому является способ, основанный на уменьшении концентрации праймеров в реакции (Sommer S.S., Groszbach A.R., Bottema C.D.: PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known singlebase changes. // Biotechniques. 1992 Jan; 12(1):82-7). В описываемом способе с целью достижения специфичности реакции используется снижение абсолютных концентраций праймеров в реакции до 0.05 μМ и менее.

Однако этот способ далеко не во всех случаях позволяет добиться строгой специфичности ПЦР. К тому же, он, как и прочие перечисленные выше способы, имеет существенный недостаток, т.к. значительно уменьшает выход ПЦР-продукта.

Таким образом, в процессе оптимизации аллель-специфической ПЦР требуется эмпирически найти довольно узкий диапазон условий, когда, с одной стороны, их жесткость не позволяет амплифицировать неспецифичный фрагмент, а с другой стороны, не происходит полного подавления реакции. Практика показывает, что выполнение этой задачи сопряжена с серьезными, подчас неразрешимыми трудностями.

Технический результат, достигаемый изобретением, заключается в следующем: упрощение протокола оптимизации аллель-специфической ПЦР, повышение ее достоверности. Это достигается посредством применения обратимого депонирования праймеров при помощи комплементарных депонирующих олигонуклеотидов.

Сущность изобретения заключается в следующем.

В предлагаемом изобретении в каждую из проводимых ПЦР-реакций добавляются депонирующие олигонуклеотидные последовательности, комплементарные аллель-специфическим праймерам. Это позволяет обратимо депонировать часть находящихся в реакции праймеров. В данной системе происходит конкуренция за аллель-специфический праймер между депонирующим олигонуклеотидом и ДНК-матрицей. В случае полной комплементарности между аллель-специфическим праймером и матрицей сразу после отжига праймера происходит его элонгация, что увеличивает сродство праймера к матрице и является началом синтеза амплифицируемого фрагмента (фиг.1, правый верхний фрагмент). В случае неполной комплементарности между аллель-специфическим праймером и матрицей, когда имеется 3'-концевой неспареный нуклеотид и элонгация существенно затруднена, праймер успевает диссоциировать с матрицей, а депонирующый олигонуклеотид, связывая его, препятствует реассоциации с матрицей (фиг.1, правый нижний фрагмент). Таким образом, неспецифическая амплификация предотвращается (фиг.1, левая колонка). Существенным преимуществом данного подхода является то, что депонирование праймеров происходит обратимо, т.к. процесс отжига-плавления праймеров и депонирующих олигонуклеотидов повторяется с каждым циклом ПЦР. Благодаря этому добавление депонирующих олигонуклеотидов в концентрациях, сопоставимых с концентрацией праймеров (соотношение депонирующих олигонуклеотидов к праймерам может варьировать в диапазоне 0.5:1 - 5:1), не отражается критически на кинетике реакции и позволяет использовать обычное число ПЦР-циклов для получения достаточного количества продукта.

Пример осуществления изобретения.

На первом этапе была оптимизирована аллель-специфическая ПЦР фрагмента гена TNF-α, содержащего полиморфизм - 308G/A. Для исключения ложных результатов генотипы также были определены с помощью метода ПЦР-ПДРФ (полиморфизма длин рестрикционных фрагментов) (фиг.2). Аллель-специфическая ПЦР включала 2 аллель-специфических праймера [5' - CAATAGGTTTTGAGGGGCATGG - 3'(праймер G); 5' - CAATAGGTTTTGAGGGGCATGA - 3'(праймер А)] для определения полиморфного нуклеотида, а также общий праймер: 5' - CGATGGAGAAGAAACCGAGA - 3'. Основные параметры ПЦР были следующие: 50 нг геномной ДНК, 0.5 ед. модифицированной (heat-activated) Taq ДНК-полимеразы, 10 mM Tris-HCl (рН - 8.3), 50 mМ КСl, 5% глицерол, 1.0 mM MgCl2, 200 μМ dNTP, 0.125 μM каждого из праймеров, конечный объем реакции - 10 μ1, 30 циклов (95°-35", 60°-1’, 72°-50"). Для данной реакции оптимальными оказались достаточно жесткие условия: высокая температура отжига (t=60°С), низкая концентрация хлорида магния (1.0 mM), низкая концентрация праймеров (0.125 μМ) и ограниченное число циклов ПЦР (n=30). При релаксации любого из указанных параметров наблюдалась неспецифическая амплификация (фиг.2, левая колонка). С другой стороны, более жесткие условия ПЦР приводили к полному отсутствию продукта (данные не представлены).

Реакции при этих же условиях были проведены в присутствии комплементарных депонирующих олигонуклеотидов (5' - СCATGCCCCTCAAAACCTAT - 3' для праймера G, 5' - ТCATGCCCCTCAAAACCTAT - 3' для праймера А). Концентрация депонирующих олигонуклеотидов была равной концентрации полиморфных праймеров. В обоих случаях, как с депонирующими олигонуклеотидами, так и без них, при жестких условиях наблюдалась только специфическая реакция. Интенсивность фрагментов на полиакриламидном геле после гель-электрофореза была одинаковой.

Далее, эти же реакции были параллельно проведены в релаксированных условиях [сниженная температура отжига (t=55°С), концентрация хлорида магния - 1.5 mM, концентрация праймеров - 0.250 μM, большее число циклов ПЦР (n=35)], причем в каждом опыте изменялись как отдельные из указанных параметров, так и все одновременно (фиг.2, правая колонка). В традиционном протоколе аллель-специфической ПЦР при релаксированных условиях во всех случаях наблюдалась неспецифическая реакция, в то время как аллель-специфическая ПЦР в присутствии депонирующих олигонуклеотидов оставалась строго специфичной, без заметного снижения количественного выхода продукта реакции.

Предлагаемое изобретение включает в себя ранее не известный подход к увеличению достоверности аллель-специфической ПЦР, что позволяет повысить эффективность и расширить возможности молекулярно-диагностических методов, основанных на детекции известных единичных нуклеотидных полиморфизмов и точковых мутаций. Предлагаемый способ позволяет расширить диапазон условий, приемлемых для аллель-специфической ПЦР.

Похожие патенты RU2240350C1

название год авторы номер документа
СПОСОБ АНАЛИЗА ГЕНЕТИЧЕСКОГО ПОЛИМОРФИЗМА ДЛЯ ОПРЕДЕЛЕНИЯ ПРЕДРАСПОЛОЖЕННОСТИ К ШИЗОФРЕНИИ И АЛКОГОЛИЗМУ 2012
  • Наседкина Татьяна Васильевна
  • Гра Ольга Алексеевна
  • Низамутдинов Игорь Игоревич
  • Галактионова Дарья Юрьевна
  • Лысов Юрий Петрович
  • Заседателев Александр Сергеевич
RU2565036C2
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ЗОНДОВ ДЛЯ ГЕНОТИПИРОВАНИЯ ПОЛИМОРФНЫХ ЛОКУСОВ ДНК, АССОЦИИРОВАННЫХ С РИСКОМ РАЗВИТИЯ СПОРАДИЧЕСКОЙ ФОРМЫ БОЛЕЗНИ АЛЬЦГЕЙМЕРА В РОССИЙСКИХ ПОПУЛЯЦИЯХ 2014
  • Наседкина Татьяна Васильевна
  • Гра Ольга Алексеевна
  • Низамутдинов Игорь Игоревич
  • Заседателев Александр Сергеевич
RU2600874C2
Способ идентификации генетических полиморфизмов, влияющих на метаболизм противоопухолевых препаратов, с использованием биологических микрочипов 2018
  • Гейдаров Рустам Нураддин Оглы
  • Михайлович Владимир Михайлович
  • Попов Анатолий Юрьевич
  • Титов Сергей Владимирович
  • Емельянова Марина Александровна
  • Шаскольский Борис Леонидович
  • Заседателев Александр Сергеевич
RU2697096C1
Способ анализа терминальных мутаций в генах BRCA1, BRCA2, ATM и PALB2 с использованием мультиплексной ПЦР и последующей гибридизацией с олигонуклеотидным биологическим микрочипом (биочипом) 2020
  • Тюляндин Сергей Алексеевич
  • Емельянова Марина Александровна
  • Покатаев Илья Анатольевич
  • Фесенко Денис Олегович
  • Абрамов Иван Сергеевич
  • Хомич Дарья Александровна
  • Заседателев Александр Сергеевич
RU2729360C1
Способ диагностики мутации 167delT (rs80338942) гена GJB2 2020
  • Лоломадзе Елена Анатольевна
  • Ребриков Денис Владимирович
RU2739943C1
Способ диагностики мутации 35delG (rs80338939) гена GJB2 2020
  • Лоломадзе Елена Анатольевна
  • Ребриков Денис Владимирович
RU2739889C1
ГЕНЕТИЧЕСКИЕ ПОЛИМОРФИЗМЫ ПРИ ВОЗРАСТНОЙ ДЕГЕНЕРАЦИИ ЖЕЛТОГО ПЯТНА 2010
  • Грэхэм, Роберт
RU2577726C2
Способ диагностики мутации c.-23+1G>A (rs80338940) гена GJB2 2020
  • Лоломадзе Елена Анатольевна
  • Ребриков Денис Владимирович
RU2746055C1
СПОСОБ АНАЛИЗА СОМАТИЧЕСКИХ МУТАЦИЙ В ГЕНЕ PI3K С ИСПОЛЬЗОВАНИЕМ LNA-БЛОКИРУЮЩЕЙ МУЛЬТИПЛЕКСНОЙ ПЦР И ПОСЛЕДУЮЩЕЙ ГИБРИДИЗАЦИЕЙ С ОЛИГОНУКЛЕОТИДНЫМ БИОЛОГИЧЕСКИМ МИКРОЧИПОМ (БИОЧИПОМ) 2013
  • Барский Виктор Евгеньевич
  • Наседкина Татьяна Васильевна
  • Емельянова Марина Александровна
  • Абрамов Иван Сергеевич
  • Паньков Сергей Васильевич
RU2549682C1
Способ анализа полиморфных маркеров в генах VKORC1, CYP4F2, CYP2C9, CYP2C19, ABCB1, ITGB3 для определения индивидуальной чувствительности к противосвертывающим препаратам 2018
  • Иконникова Анна Юрьевна
  • Наседкина Татьяна Васильевна
  • Заседателев Александр Сергеевич
RU2689400C1

Иллюстрации к изобретению RU 2 240 350 C1

Реферат патента 2004 года СПОСОБ ИДЕНТИФИКАЦИИ ГЕННЫХ МУТАЦИЙ И ПОЛИМОРФИЗМОВ

Изобретение относится к области медицины и может быть использовано в молекулярной диагностике. Предложенный способ идентификации генных мутаций и полиморфизмов осуществляют посредством проведения аллель-специфической полимеразной цепной реакции в присутствии депонирующих олигонуклеотидов, комплементарных полиморфным праймерам. Использование изобретения позволяет упростить протокол оптимизации аллель-специфической ПЦР и повысить достоверность получаемых результатов. 2 ил.

Формула изобретения RU 2 240 350 C1

Способ идентификации генных мутаций и полиморфизмов посредством аллель-специфической полимеразной цепной реакции, отличающийся тем, что аллель-специфическую ПЦР проводят в присутствии депонирующих олигонуклеотидов, комплементарных полиморфным праймерам в соотношении 1:0,5-1:5.

Документы, цитированные в отчете о поиске Патент 2004 года RU2240350C1

SOMMER SS, GROSZBACH AR, BOTTEMA CD, J
Biotechniques, 1992, Jan; 12(1)
RU 2159248 C2, 20.11.2000
YU О, MUCAIM, LIU Q, STEINMAN CR, J
Biotechniques, 1997; 23(4)
ХИМИЧЕСКИ МОДИФИЦИРОВАННЫЙ ТЕРМОСТАБИЛЬНЫЙ ФЕРМЕНТ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ АМПЛИФИКАЦИИ СОДЕРЖАЩЕЙСЯ В ОБРАЗЦЕ НУКЛЕИНОВОЙ КИСЛОТЫ, РЕАКЦИОННАЯ СМЕСЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И НАБОР ДЛЯ ПРОВЕДЕНИЯ ЦЕПНОЙ РЕАКЦИИ 1996
  • Бирч Дэвид Эдвард
  • Лэрд Уолтер Джозеф
  • Зокколи Майкл Энтони
RU2174556C2
WO 9640992, 19.12.1996.

RU 2 240 350 C1

Авторы

Имянитов Е.Н.

Буслов К.Г.

Суспицын Е.Н.

Кулигина Е.Ш.

Белогубова Е.В.

Григорьев М.Ю.

Того А.В.

Хансон К.П.

Даты

2004-11-20Публикация

2003-03-11Подача