Регулятор температуры относится к транспортному машиностроению, в частности к области автоматических систем регулирования температуры теплоносителей (высоконагретой детали, воды масла, наддувочного воздуха и др. тепловых двигателей, обмоток электрических машин, трансформаторов, элементов полупроводниковых преобразователей и др.) в системах охлаждения энергетических установок транспортных средств (локомотивов, автомобилей, тракторов и др.).
Любая автоматическая система содержит две функциональные части: объект регулирования и автоматический регулятор [1]. Любой автоматический регулятор содержит две основные соединенные последовательно функциональные части: управляющий орган и исполнительно-регулирующее устройство. В свою очередь, исполнительно-регулирующее устройство содержит две функциональные части: исполнительный механизм и регулирующий орган [2, 3]. В автоматических регуляторах температуры, содержащих в качестве регулирующего органа вентилятор охлаждения, функции исполнительного механизма выполняет привод вентилятора [2, 3]. Известные автоматические регуляторы температуры с электрическим приводом вентилятора на переменном токе содержат источник электроэнергии (обычно тяговый генератор или вспомогательный генератор). Известны автоматические регуляторы температуры энергетических установок транспортных средств с электрическим приводом вентилятора на переменном токе трех видов. Автоматические регуляторы температуры первого вида содержат источник электроэнергии, к которому подключен преобразователь частоты (обычно содержащий звено постоянного тока - выпрямитель), соединенный со статорными обмотками асинхронного двигателя с короткозамкнутым ротором, соединенного с валом вентилятора. К преобразователю температуры подключен управляющий орган, управляющим им по температуре теплоносителя в системе охлаждения энергетической установки транспортного средства [1, 3, 4]. В электрическом приводе вентилятора такого автоматического регулятора температуры реализован принцип частотного управления асинхронным двигателем [6, 8]. Автоматические регуляторы температуры второго вида содержат источник электроэнергии, к которому подключен преобразователь фазного напряжения, соединенный со статорными обмотками специального асинхронного двигателя с двухслойным (или двухпакетным) ротором, соединенным с валом вентилятора. К преобразователю фазного напряжения подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства. В электрическом приводе вентилятора охлаждения такого автоматического регулятора температуры реализован принцип фазного управления асинхронным двигателем с двухслойным (или двухпакетным) ротором [5, 7]. Автоматические регуляторы температуры третьего вида содержат источник электроэнергии, к которому подключены статорные обмотки асинхронного двигателя с короткозамкнутым ротором, соединенным с валом вентилятора переменной подачи (с поворотными лопастями). К механизму поворота лопастей вентилятора подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства [3, 8, 9]. Известные автоматические регуляторы температуры энергетической установки транспортного средства имеют существенные недостатки. В автоматических регуляторах температуры с частотным управлением асинхронного двигателя вентилятора охлаждения необходимо применять преобразователи частоты определенных габаритных размеров, массы и стоимости на полную мощность асинхронного двигателя. Это также снижает надежность автоматического регулятора температуры. При частотном управлении асинхронным двигателем с вентиляторной нагрузкой его кпд снижается из-за несинусоидальности питающего напряжения, особенно в зоне частичных нагрузок. В автоматических регуляторах температуры с фазным управлением асинхронным двигателем с двухслойным (или двухпакетным) ротором необходимо применение преобразователя фазного напряжения определенных габаритных размеров, массы и стоимости. Это также снижает надежность автоматического регулятора температуры. При фазном управлении асинхронным двигателем с вентиляторной нагрузкой кпд электрического привода значительно снижается при уменьшении частоты вращения вентилятора. Кроме того, в таком электрическом приводе вентилятора охлаждения мощность асинхронного двигателя на 30-40% меньше номинальной мощности подобного асинхронного двигателя с короткозамкнутым ротором. В автоматических регуляторах температуры с электроприводом вентилятора переменной подачи необходимо применение механизма поворота лопастей, что усложняет конструкцию регулятора. Механизм поворота лопастей увеличивает размеры и массу вентилятора охлаждения, а также стоимость вентилятора и регулятора. Кроме того, при таком способе изменения подачи вентилятора асинхронный двигатель имеет частоту вращения, пропорциональную частоте вращения питающего напряжения, которая может быть постоянной или изменяться в малом диапазоне, что обуславливает при малых тепловых нагрузках системы охлаждения энергетической установки работу вентилятора охлаждения с малыми углами поворота лопастей и низким кпд вентилятора и электрического привода. Предлагаемый автоматический регулятор температуры с электроприводом вентилятора на переменном токе не имеет недостатков известных автоматических регуляторов: в нем не применяется преобразователь частоты или преобразователь фазного напряжения, а также механизм поворота лопастей вентилятора охлаждения. В нем применены два одинаковых асинхронных двигателя с фазными роторами, каждый мощностью, равной половине мощности вентилятора. Статор одного из асинхронных двигателей поворотный, однако, механизм поворота статора намного проще, меньше и дешевле, чем механизм поворота лопастей вентилятора охлаждения. Предлагаемый автоматический регулятор температуры с плавно управляемым электроприводом вентилятора охлаждения на переменном токе содержит следующие основные элементы (фиг.1. Принципиальная блок-схема автоматического регулятора температуры энергетической установки транспортного средства с плавно управляемым электроприводом вентилятора охлаждения на переменном токе): управляющий орган 1, подключенный к механизму поворота статора 2 асинхронного двигателя 3, вал которого соединен с валом второго асинхронного двигателя 4 и с валом вентилятора охлаждения 5, статорные обмотки асинхронных двигателей подключены к источнику электроэнергии 6, а их роторные обмотки соединены последовательно посредством резисторов 7. Автоматический регулятор температуры работает следующим образом. При величине регулируемой температуры tp меньше минимального значения tpmin выходной сигнал управляющего органа 1 Iy имеет минимальное значение Iymin, при этом выходной сигнал механизма поворота статора 2 αс имеет минимальное значение αcmin и статор асинхронного двигателя 3 занимает положение (т.е. имеет угол поворота β), при котором частота вращения вентилятора ωW охлаждения 5 равна нулю. Это обусловлено тем, что при согласном положении статоров асинхронных двигателей 3 и 4, когда αс=0 электрических градусов, ЭДС (Е) в роторных обмотках направлены встречно и Е
Источники информации
1. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.
2. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1977.
3. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995.
4. Булгаков А.А. Частотное управление асинхронными двигателями. - М.: Наука, 1966.
5. Могильников B.C., Олейников А.М. Асинхронный электродвигатель с двухслойным ротором. - М.: Энергия, 1983.
6. Винокуров В.А., Попов Д.А. Электрические машины железнодорожного транспорта. М.: Транспорт, 1986.
7. Захарчук А.С. Экспериментальное исследование тиристорной системы плавного регулирования температуры двигателей с асинхронным мотор-вентилятором с двухслойным ротором. - Л.: ЛИИЖТ, 1976 (Деп. рук., ЦНИИТЭИ МПС, 25.05.76, №343, 76).
8. А.с. 206627 (СССР).
9. А.с. 246165 (СССР).
10. А.с. 4378415 (СССР).
11. Патент ФРГ 2121209.
название | год | авторы | номер документа |
---|---|---|---|
РЕГУЛЯТОР ТЕМПЕРАТУРЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТРАНСПОРТНОГО СРЕДСТВА | 2002 |
|
RU2214929C1 |
АВТОМАТИЧЕСКИЙ КОМБИНИРОВАННЫЙ МИКРОПРОЦЕССОРНЫЙ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТРАНСПОРТНОГО СРЕДСТВА | 2007 |
|
RU2369752C2 |
АВТОМАТИЧЕСКИЙ КОМБИНИРОВАННЫЙ МИКРОПРОЦЕССОРНЫЙ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТРАНСПОРТНОГО СРЕДСТВА | 2010 |
|
RU2426895C1 |
СИСТЕМА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ СРЕДЫ ТЕПЛОВОЙ МАШИНЫ | 2003 |
|
RU2264544C2 |
АВТОМАТИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ОБМОТОК ТЯГОВЫХ ЭЛЕКТРИЧЕСКИХ МАШИН С ЭЛЕКТРИЧЕСКИМ НА ПЕРЕМЕННОМ ТОКЕ ПРИВОДОМ ВЕНТИЛЯТОРА | 2003 |
|
RU2256996C1 |
РЕГУЛЯТОР ТЕМПЕРАТУРЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТРАНСПОРТНОГО СРЕДСТВА | 2007 |
|
RU2351776C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ТРАНСПОРТНОГО СРЕДСТВА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2541491C1 |
Автоматическая микропроцессорная система регулирования температуры энергетической установки транспортного средства | 2016 |
|
RU2645519C1 |
СИСТЕМА ВОЗДУШНОГО ОХЛАЖДЕНИЯ БЛОКОВ ПУСКОТОРМОЗНЫХ РЕЗИСТОРОВ | 2010 |
|
RU2465152C2 |
АВТОМАТИЧЕСКИЙ КОМБИНИРОВАННЫЙ МИКРОПРОЦЕССОРНЫЙ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ТЕПЛОВОЙ МАШИНЫ С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ ВЕНТИЛЯТОРА | 2011 |
|
RU2501961C2 |
Изобретение относится к области автоматических систем регулирования температуры теплоносителей в системах охлаждения энергетических установок транспортных средств. Регулятор температуры энергетической установки транспортного средства содержит источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения. В регуляторе применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения. Статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу. Изобретение обеспечивает повышение кпд и надежности регулятора. 4 ил.
Регулятор температуры энергетической установки транспортного средства, содержащий источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения, отличающийся тем, что в нем применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения; статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу.
УСТРОЙСТВО для АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ | 0 |
|
SU246165A1 |
Система охлаждения двигателя внутреннего сгорания | 1973 |
|
SU500359A1 |
US 4313402 А, 02.02.1982 | |||
GB 1554695 А, 24.10.1979 | |||
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ ВЫДЕЛЕНИЯ И КУЛЬТИВИРОВАНИЯ МЕНИНГОКОККОВ (МЕНИНГОАГАР) | 1996 |
|
RU2103368C1 |
DE 3139621 А1, 27.05.1982 | |||
US 4489680 А, 25.12.1984. |
Авторы
Даты
2004-12-10—Публикация
2003-02-19—Подача