ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА Российский патент 2005 года по МПК G01B5/00 

Описание патента на изобретение RU2244254C2

Изобретение относится к области туннельной и атомно-силовой микроскопии, а точнее устройствам, обеспечивающим градуировку сканирующих зондовых микроскопов (СЗМ).

Известна тестовая структура [1], представляющая собой основание с расположенными на нем микровыступами, сформированными с помощью технологий литографии и травления. Микроструктуры имеют горизонтальную верхнюю грань и выполнены в виде гофр. Подобная структура после соответствующей аттестации линейных размеров микровыступов или ямок независимыми методами позволяет градуировать зонды СЗМ для исследования микрообъектов по направлениям X, Y, Z.

Недостатками данной тестовой структуры является то, что она, во-первых, не охватывает диапазон латеральных линейных размеров (примерно от 10 нм до 200 нм), который является наиболее интересным в СЗМ. Во-вторых, эта тестовая структура (если она 2-мерная) позволяет калибровать сканер по углу лишь при значении 90°, и, следовательно, с помощью нее затруднительно провести градуировку и выявить линейность сканера по углу.

Из известных тестовых структур наиболее близкой к заявляемой по функциональному назначению и технической сущности является тестовая структура, описанная в патенте [2], в котором в качестве калибровочных элементов используются углеродные нанотрубки.

Недостатками данной тестовой структуры являются следующие ее особенности.

1. Поскольку углеродные нанотрубки произвольно осаждаются на поверхность, то для их поиска необходимо дополнительное сканирование, что существенно понижает экспрессность процедуры калибровки.

2. Неконтролируемость процесса осаждения нанотрубок, с точки зрения их пространственного положения, приводит к их пространственному разупорядочению на поверхности, что, в свою очередь, приводит к уменьшению точности измерений, т.к. в этом случае необходимо в каждом измерении (сканировании) изменять азимутальный угол образца так, чтобы ось нанотрубки была перпендикулярна направлению сканирования. Если же при этом трубка непрямая, то погрешность при определении ее размеров еще более возрастает.

3. Измерение на индивидуальном объекте существенно повышает погрешность измерений из-за флуктуации реального размера нанотрубки. Для решения этой проблемы в данном патенте предлагается использовать кластеры нанотрубок. Однако, во-первых, размеры такого рода кластеров невелики (100-500 трубок), а, во-вторых, найти кластер с упорядоченной структурой затруднительно, поскольку, как говорилось выше, процесс осаждения нанотрубок на поверхность неконтролируем. Кроме того, поскольку нанотрубки достаточно длинные (вплоть до одного микрона), то закрепление их на поверхности может осуществляться лишь в отдельных точках по их длине, что также приводит к нарушению периодичности нанотрубок в кластере, т.е. к повышению погрешности.

4. При использовании непроводящей подложки к данной тестовой структуре может быть применен только атомно-силовой режим СЗМ, что снижает ее функциональные возможности.

5. Поскольку тестовая структура с одиночной углеродной нанотрубкой представляет собой, по сути, одномерный объект, то градуировка СЗМ при однонаправленном сканировании осуществляется только по одной координате, что снижает ее функциональные возможности.

6. При адсорбции нанотрубок на подложку в их расположении не существует двух взаимно строго ориентированных направлений. Следовательно, в этом случае не существует эталонного объекта для калибровки по углу, что снижает функциональные возможности тестовой структуры.

Целью настоящего изобретения является расширение диапазона эталонных размеров в тестовых решетках, повышение экспрессности измерений и повышение универсальности тестовых решеток, т.е. использование их как в атомно-силовом режиме, так и в режиме измерений туннельного тока, а также проведение одновременно калибровки и по координатам X, Y, Z, и по азимутальному углу ϕ, что приводит к существенному расширению функциональных возможностей. Поставленная цель достигается тем, что в тестовой структуре для градуировки СЗМ, состоящей из основания и расположенных на нем искусственных упорядоченных микроструктур с известными геометрическими параметрами, в качестве искусственных микроструктур используются искусственные наносферы или микросферы, внешняя поверхность которых покрыта тонким проводящим слоем.

Тестовые структуры иллюстрируются на фиг.1-4.

На фиг.1 приведено сечение однослойной упорядоченной тестовой структуры.

На фиг.2 приведено сечение тестовой структуры, покрытой слоем проводящего материала.

На фиг.3 приведена упорядоченная тестовая структура из искусственных наносфер или микросфер (вид сверху). Стрелками "а" и "б" выделены "кристаллографические" направления с минимальным углом между ними 60°.

На фиг.4 приведено сечение многослойной упорядоченной тестовой структуры из искусственных наносфер или микросфер.

Примеры выполнения тестовой структуры.

Пример 1. Тестовая структура состоит из основания 1 (см. на фиг.1) и расположенных на нем искусственных наносфер или микросфер 2. В частности, искусственные наносферы или микросферы могут быть синтезированы по технологии синтеза искусственных опалов [3, 4, 5].

Пример 2. Тестовая структура состоит из основания 3 (см. на фиг.2) и расположенных на нем искусственных наносфер или микросфер 4, образующих на поверхности упорядоченную структуру. Для использования данной тестовой структуры в режиме измерений туннельного тока ее покрывают тонким (10-40 нм) слоем проводящего материала 5. В качестве проводящего материала можно использовать и полупроводниковые материалы, и металлы. Но наиболее подходящим для этих целей является золото.

Пример 3. В результате синтеза опаловой матрицы может быть получена многослойная структура, в которой роль подложки выполняют нижележащие слои. На фиг.4 приведена многослойная упорядоченная тестовая структура из искусственных наносфер или микросфер. 6 - проводящее покрытие; 7 - верхний упорядоченный слой, который выполняет функцию тестовой структуры; 8 - нижележащие слои, выполняющие функцию подложки.

Поскольку плотная упаковка одинаковых сфер представляет собой гексагональную структуру, то, кроме эталонных отрезков по различным "кристаллографическим" направлениям, имеется эталон угла между этими "кристаллографическими" направлениями, минимальный из которых равен 60° (см. фиг.3). Максимальная длина эталонных отрезков, состоящих из отдельных сфер, определяется максимальной площадью сканирования. Толщина проводящего слоя выбирается из двух условий: во-первых, слой должен быть сплошным, а во-вторых, не должен сглаживать рельеф. Современная технология синтеза опаловых матриц позволяет легко варьировать размерами получаемых сфер в рамках одной технологии, что позволяет без существенных затрат иметь набор тестовых структур, состоящих из сфер диаметром от 10 нм до микрона. Минимальный диаметр сфер определяется физическим пределом для используемого материала, ниже которого материал уже нельзя рассматривать как непрерывный континуум.

Процедура калибровки СЗМ с помощью предлагаемой тестовой структуры проводится следующим образом. Тестовую структуру помещают в позицию измерения на столик сканера и производят стандартное сканирование поверхности тестовой структуры в режиме измерения туннельного тока или в атомно-силовом режиме. Получив в результате этого сканирования топографическое изображение поверхности тестовой структуры, выбирают произвольный линейный отрезок вдоль "кристаллографического" направления, например вдоль направления "а" на фиг.3, который равен целому числу диаметров сфер (в данном примере четырем диаметрам). Поскольку диаметр сфер, составляющих тестовую решетку, известен, то известна и реальная длина этого отрезка. Сравнив это эталонное значение с показаниями микроскопа, вводят корректирующие коэффициенты в измерительную систему микроскопа. Подробнее процесс калибровки см. в [6, 7].

Использование в качестве эталонных микроструктур искусственных наносфер или микросфер выгодно отличает предлагаемую тестовую структуру от указанного прототипа, т.к.:

- перекрывается диапазон линейных эталонов, недоступный при использовании тестовых структур в указанном прототипе, что расширяет функциональные возможности предлагаемой тестовой структуры;

- упорядоченную структуру при использовании искусственных наносфер или микросфер легко получить на гораздо большей площади, чем площадь, которую занимает кластер нанотрубок в указанном прототипе. Этот фактор существенно повышает экспрессность процедуры калибровки;

- плотная упаковка наносфер или микросфер образует "кристаллографические" направления, со строго фиксированными углами, которые могут быть использованы в качестве эталонов для калибровки по углу, что расширяет функциональные возможности предлагаемой тестовой структуры и понижает погрешность измерений.

В результате покрытия предлагаемой тестовой структуры проводящим материалом она может быть использована для калибровки и в силовом режиме СЗМ, и в режиме измерения туннельного тока, независимо от электропроводности подложки, что расширяет функциональные возможности предлагаемой тестовой структуры.

Помимо этого проводящий слой упрочняет и капсюлирует тестовую структуру, что понижает погрешность измерений.

Поскольку энергия связи между сферами в плотноупакованном слое достаточно высока, то при нанесении нескольких слоев сфер (в зависимости от диаметра сфер количество слоев варьируется примерно от 10 и более) структура сохраняет свои геометрические характеристики (расположение сфер в пространстве) без использования подложки, что повышает надежность реализации плотноупакованной структуры и, следовательно, уменьшает погрешность измерений, так как поверхность реальной подложки имеет конечную шероховатость, действие которой направлено на разупорядочение слоя наносфер или микросфер.

Экономическая эффективность от использования предлагаемой тестовой структуры, в отличие от тестовой структуры, в указанном прототипе заключается в существенном снижении материальных затрат на изготовление тестовой структуры.

Источники информации

1. Патент RU № 2158899, кл. G 01 В 15/00, 2000.

2. Патент US № 6354133, кл. G 01 В 5/28, 2002.

3. Р.Jiang, J.F.Bertone, K.S.Hwang and V.L.Colvin. Chem. Mater. 11, 2132 (1999).

4. W.Stober, A.Fink and E.Bohn, J.Colloidal Interface Sci. 26, 62 (1968).

5. G.A.Emelchenko, K.A.Aldushm, V.M.Masalov, A.V.Bazhenov, A.V.Gorbunov. Phys. Low-Dim. Struc., 1/2(2002)99112.

6. Зондовая микроскопия для биологии и медицины. В.А.Быков и др. Сенсорные системы, т.12, № 1, 1998, с.99-121.

7. Сканирующая туннельная и атомно-силовая микроскопия в электрохимии поверхности. А.И.Данилов, Успехи химии, 64 (8), 1995, с.818-833.

Похожие патенты RU2244254C2

название год авторы номер документа
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩИХ ЗОНДОВЫХ МИКРОСКОПОВ 2009
  • Бобринецкий Иван Иванович
  • Неволин Владимир Кириллович
  • Суханов Валерий Николаевич
RU2402021C1
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ОСТРИЯ ИГЛЫ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2006
  • Бобринецкий Иван Иванович
  • Неволин Владимир Кириллович
  • Строганов Антон Александрович
  • Чаплыгин Юрий Александрович
RU2308414C1
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 1997
  • Быков В.А.
  • Гологанов А.Н.
RU2121131C1
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ОЦЕНКИ РАДИУСА КРИВИЗНЫ ОСТРИЯ ИГЛЫ КАНТИЛЕВЕРА СКАНИРУЮЩЕЙ ЗОНДОВОЙ МИКРОСКОПИИ 2006
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Орлов Игорь Юрьевич
  • Тихомиров Алексей Александрович
  • Шевяков Василий Иванович
RU2335735C1
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2000
  • Ибрагимов А.Р.
  • Рабухин А.Л.
RU2158899C1
СПОСОБ МЕТАЛЛОГРАФИЧЕСКОГО АНАЛИЗА 2012
  • Адамчук Вера Константиновна
  • Балиж Кирилл Сергеевич
  • Быков Виктор Александрович
  • Добротворский Александр Мстиславович
  • Мальцев Андрей Анатольевич
  • Пушко Сергей Вячеславович
  • Сеньковский Борис Владимирович
  • Ульянов Павел Геннадьевич
  • Усачев Дмитрий Юрьевич
  • Цыганов Александр Борисович
RU2522724C2
СПОСОБ ДЕТЕКЦИИ ТОКСИЧНЫХ БЕЛКОВ НА ОСНОВЕ СКАНИРУЮЩЕЙ ЗОНДОВОЙ МИКРОСКОПИИ 2003
  • Быков Виктор Александрович
  • Тоневицкий Александр Григорьевич
  • Кирпичников Михаил Петрович
  • Агапов Игорь Иванович
  • Малюченко Наталья Валерьевна
  • Мойсенович Михаил Михайлович
  • Савватеев Михаил Николаевич
RU2267787C2
СПОСОБ ОЦЕНКИ КАЧЕСТВА ВАКЦИН 2005
  • Агапов Игорь Иванович
  • Малюченко Наталья Валерьевна
  • Тоневицкий Александр Григорьевич
  • Шумаков Валерий Иванович
  • Быков Виктор Александрович
  • Саунин Сергей Алексеевич
RU2339036C2
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 1997
  • Быков В.А.
  • Гологанов А.Н.
  • Шабратов Денис Владимирович
RU2121656C1
ТЕСТОВЫЙ ОБЪЕКТ ДЛЯ КАЛИБРОВКИ РАСТРОВЫХ ЭЛЕКТРОННЫХ И СКАНИРУЮЩИХ ЗОНДОВЫХ МИКРОСКОПОВ 2006
  • Волк Чеслав Петрович
  • Горнев Евгений Сергеевич
  • Новиков Юрий Алексеевич
  • Озерин Юрий Васильевич
  • Плотников Юрий Иванович
  • Раков Александр Васильевич
  • Тодуа Павел Андреевич
RU2325619C2

Иллюстрации к изобретению RU 2 244 254 C2

Реферат патента 2005 года ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА

Изобретение относится к области туннельной и атомно-силовой микроскопии, а точнее к устройствам, обеспечивающим градуировку сканирующих зондовых микроскопов (СЗМ). Сущность изобретения заключается в том, что в тестовой структуре для градуировки СЗМ, состоящей из основания и расположенных на нем искусственных упорядоченных микроструктур с известными геометрическими параметрами, в качестве искусственных микроструктур используются искусственные наносферы или микросферы, внешняя поверхность которых покрыта тонким проводящим слоем. Подобное выполнение тестовой структуры обеспечивает существенное расширение функциональных возможностей предлагаемой тестовой структуры за счет увеличения числа калибровочных параметров, расширение диапазона эталонных линейных размеров, возможности использовать тестовую структуру, как в атомно-силовом, так и в туннельном режимах, и повышение экспрессности измерений. 3 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 244 254 C2

1. Тестовая структура для градуировки сканирующего зондового микроскопа, состоящая из основания и расположенных на нем искусственных упорядоченных микроструктур с известными геометрическими параметрами, отличающаяся тем, что в качестве искусственных микроструктур используются наносферы или микросферы.2. Тестовая структура по п.1, отличающаяся тем, что поверхность упорядоченных микроструктур покрыта тонким проводящим слоем.3. Тестовая структура по п.1, отличающаяся тем, что диапазон диаметров искусственных сфер может варьироваться от минимальных размеров, определяющихся физическим пределом материала до микрометров.4. Тестовая структура по п.1, отличающаяся тем, что в качестве основания может быть использована многослойная структура из искусственных наносфер или микросфер.

Документы, цитированные в отчете о поиске Патент 2005 года RU2244254C2

US 6354133 В1, 12.03.2002
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2000
  • Ибрагимов А.Р.
  • Рабухин А.Л.
RU2158899C1
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 1997
  • Быков В.А.
  • Гологанов А.Н.
  • Шабратов Денис Владимирович
RU2121656C1
СПОСОБ КАЛИБРОВКИ ПЬЕЗОСКАНЕРА АТОМНО-СИЛОВОГО МИКРОСКОПА 2000
  • Толстихина А.Л.
  • Белугина Н.В.
  • Гайнутдинов Р.В.
RU2179704C2
US 6358860 В1, 19.03.2002
Устройство для обесцвечивания сиропов 1976
  • Валер Александр Наумович
  • Клейнер Лев Борисович
  • Армер Борис Симхович
  • Шлафер Илья Михайлович
  • Либерман Илья Григорьевич
  • Петруняк Владимир Дмитриевич
SU676614A1

RU 2 244 254 C2

Авторы

Быков В.А.

Евплов Д.А.

Емельченко Г.А.

Масалов В.М.

Медведев Б.К.

Редченко В.В.

Саунин С.А.

Даты

2005-01-10Публикация

2003-02-28Подача