Изобретение относится к химической промышленности, преимущественно к технологии стекловолокнистых материалов, которые используют в качестве армирующего наполнителя при производстве композиционных материалов на основе термореактивных и термопластичных полимерных связующих.
Известно использование в качестве армирующего наполнителя различного рода листовых материалов в виде рубленых стекловолокон (см. патент РФ 2021303, опубл. 15.10.1994).
Использование данного армирующего наполнителя позволяет получать стеклополимерные композиционные материалы с улучшенной водостойкостью (водонепроницаемостью). Однако механические свойства материалов с таким армирующим наполнителем недостаточно высоки.
Наиболее близким к изобретению по технической сущности и достигаемому результату является стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия (см. патент РФ 2077515, опубл. 20.04.1997).
Однако данное стекловолокно не позволяет создать стеклополимерные композиционные материалы с требуемыми физико-механическими свойствами.
Задачей, на решение которой направлено настоящее изобретение, является повышение физико-механических свойств стеклополимерных композиционных материалов, в частности прочности при изгибе и межслоевом сдвиге.
Указанная задача решается за счет того, что стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов содержит стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия, при этом наполнитель сформирован из волокон, на поверхности которых в процессе химической обработки созданы силанольные группы SiO(OH)2, при следующем составе стекловолокна (мас.%):
диоксид кремния 50-99;
оксид алюминия 1-20;
оксид кальция 0-17;
оксид магния 0-15;
оксид натрия 0-20;
оксид бора 0-15;
силанольные группы SiO(OH)2 0,5-5,0
при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность от 2 до 50 м2 на 1 грамм своей массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна.
Анализ стекловолокнистых армирующих тканых наполнителей, подвергнутых различным степеням поверхностной химической обработки, показал, что изменение химического состава стекловолокна в приповерхностном слое и развиваемая в процессе его обработки удельная поверхность оказывают существенное влияние на физико-механические свойства конечного продукта - стеклополимерного композиционного материала, особенно, на основе термопластичных связующих.
В ходе исследования роли химической обработки тканого армирующего наполнителя из стекловолокон указанного выше химического состава было установлено, что развитие его удельной поверхности до значений от 2 до 50 м2 на грамм массы наполнителя позволяет улучшить такие показатели стеклополимерного композиционного материала, как прочность при изгибе и при межслоевом сдвиге. Уменьшение удельной поверхности ниже указанного диапазона, а также ее увеличение выше уровня верхней границы приводит к снижению прочности при изгибе и при межслоевом сдвиге. Причиной существования такого преимущественного интервала оптимальных значений удельной поверхности стекловолокнистого тканого армирующего наполнителя (2-50 м2/г) по-видимому является конкуренция двух факторов: 1 - упрочнение конечного изделия (стеклополимерного композиционного материала) за счет увеличения сил межфазового сцепления (в связи с развитием шероховатости наполнителя); 2 - снижение механических характеристик самого наполнителя при его химической обработке.
Химическая обработка стекловолокнистого армирующего тканого наполнителя с образованием в приповерхностном слое волокон силанольных групп SiO(OH)2 позволяет добиться усиления не только механического сцепления между наполнителем и полимерным связующим, но и усилить адгезию в межфазовой границе за счет образования прочных межмолекулярных связей с химически активными силанольными группами. При анализе эффективности действия этого фактора установлено, что оптимальные значения физико-механических характеристик стеклополимерных композиционных материалов достигаются при содержании в стеклотканом наполнителе силанольных групп в интервале 0,5-5%, при этом толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна. При выходе за значения верхних границ обозначенных интервалов увеличивается вероятность появления на поверхности стекловолокон опасных очагов разрушения, что приводит к росту дефектности армирующего стекловолокна с соответствующим снижением разрывной прочности стекловолокон и композиционного материала в целом. При уменьшении концентрации силанольных групп и глубины их проникновения в волокно за нижнюю границу эффект химической и механической активации стекловолокнистого тканого наполнителя становится незначительным и не сопровождается заметным улучшением механических характеристик конечного изделия - стеклополимерного композиционного материала.
Пример 1 (базовый пример сравнения). При изготовлении образца стеклополимерного композиционного материала в качестве наполнителя использована стеклоткань марки Э-180 с диаметром элементарного волокна 7 микрон, имеющая следующий химический состав: SiO2 - 53%, Аl2О3 - 15%, CaO - 17%, MgO - 4%, В2О3 - 10%, Na2O - 0,5%. Перед изготовлением композита стеклоткань термически обработана для удаления технологического замасливателя. Химической обработке стеклоткань не подвергалась, в связи с чем силанольные группы в ее составе отсутствуют, а удельная поверхность составляет 0.5 м2/г, что соответствует гладкой геометрической поверхности волокон. Образец стеклокомпозиционного материала изготавливался из 14 слоев указанной армирующей ткани. Слои этого тканого наполнителя перекладывались полиамидной пленкой ПК-4 и прессовались при температуре 225 °С и давлении 2МПа. Изгибная прочность изготовленных образцов стеклополимерного композита - 140 МПа, сдвиговая прочность - 9.3 МПа, суточное водопоглощение - 2.57%.
Пример 2. Те же условия приготовления образца стеклополимерного композита, которые описаны в Примере 1: 14 слоев армирующей ткани Э-180 с выжженным технологическим замасливателем. Армирующая стеклоткань подвергнута предварительной химической обработке, в результате которой удельная поверхность развита до уровня 18-20 м2/г, содержание силанольных групп доведено до 1,5-2%, глубина их расположения в приповерхностном слое волокна составила 0,02-0,03 микрона. Изготовленные таким образом образцы стеклотканого наполнителя перекладываются полиамидной пленкой ПК-4 и прессуются при температуре 225 °С и давлении 2 МПа. Изгибная прочность образцов - 200 МПа (улучшение характеристики по сравнению с базовым образцом на 43%), сдвиговая прочность - 15.3 МПа (улучшение на 64%), суточное водопоглощение - 1.87% (улучшение на 30%).
Пример 3. Те же условия приготовления образца стеклополимерного композита, которые описаны в Примерах 1,2: 14 слоев армирующей ткани Э-180 с выжженным технологическим замасливателем. Армирующая стеклоткань подвергнута предварительной химической обработке, в результате которой удельная поверхность развита до уровня 45-50 м2/г, содержание силанольных групп доведено до 4-5%, глубина их расположения в приповерхностном слое волокна составила 0,06-0,07 микрона. Изготовленные таким образом образцы стеклотканого наполнителя перекладываются полиамидной пленкой ПК-4 и прессуются при температуре 225°С и давлении 2 МПа. Изгибная прочность образцов - 145 МПа (незначительное улучшение этой характеристики), сдвиговая прочность - 9.3 МПа (характеристика не изменилась), суточное водопоглощение - 1.80% (улучшение на 34%).
Пример 4. При тестировании образцов стеклополимерных композитов со стекловолокнистым армирующим тканым наполнителем с более глубокой химической обработкой (удельная поверхность более 50 м2/г, содержание силанольных групп более 5%, глубина их проникновения более 0,07 микрона) наблюдалось снижение механических характеристик по сравнению с базовым объектом (однако, при этом водостойкость стеклокомпозита продолжала возрастать с углублением химической обработки наполнителя).
Как показал проведенный анализ физико-химических, механических и технологических свойств предлагаемого стекловолокнистого армирующего тканого наполнителя с указанными выше отличительными признаками, его использование в производстве стеклополимерных композиционных материалов позволит улучшить потребительские свойства этих изделий (прочность, водостойкость, сопротивляемость воздействиям агрессивных сред) на 30-60%. Предлагаемый стекловолокнистый армирующий тканый наполнитель может быть использован при создании новых стеклополимерных композиционных материалов в химической, нефтехимической индустрии, машиностроении, электронике и в других отраслях промышленности, а также при изготовлении труб.
название | год | авторы | номер документа |
---|---|---|---|
СТЕКЛО ДЛЯ ПРОИЗВОДСТВА СТЕКЛОВОЛОКНА И ВЫСОКОТЕМПЕРАТУРНОЕ КРЕМНЕЗЕМНОЕ ВОЛОКНО НА ЕГО ОСНОВЕ | 2000 |
|
RU2165393C1 |
СТЕКЛОПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2014 |
|
RU2577053C2 |
КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ДИОКСИДА СЕРЫ В ТРИОКСИД СЕРЫ | 1999 |
|
RU2158633C1 |
Композиционный материал из углеткани и фосфатного связующего и способ его получения | 2023 |
|
RU2808804C1 |
Способ получения композиционного высокомодульного материала на основе бутадиенового эластомера с гибким армирующим элементом | 2022 |
|
RU2793691C1 |
СТЕКЛО ДЛЯ ПРОИЗВОДСТВА НЕПРЕРЫВНОГО СТЕКЛОВОЛОКНА | 2019 |
|
RU2709042C1 |
ВОЛОКНИСТЫЙ НАНОЦЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2595284C1 |
КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ С ИЗБЫТКОМ КИСЛОРОДА ОТ ОКСИДОВ АЗОТА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ | 2001 |
|
RU2186621C1 |
НАНОСТРУКТУРИРОВАННЫЙ СТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2017 |
|
RU2668030C1 |
СВЯЗУЮЩЕЕ ДЛЯ СТЕКЛОПЛАСТИКА И ПУЛТРУЗИОННЫЙ ПРОФИЛЬ ИЗ СТЕКЛОПЛАСТИКА | 2012 |
|
RU2502602C1 |
Изобретение относится к химической промышленности, преимущественно к производству стекловолокнистых материалов, предназначенных для изготовления стеклополимерных композитов. Стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов состоит из стекловолокна, содержащего в своем составе диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид бора, оксид натрия, а также силанольные группы SiO(OH)2, образованные в поверхностном слое стекловолокна в процессе химической его обработки. Стекловолокно имеет следующий состав (мас.%): диоксид кремния 50-99; оксид алюминия 1-20; оксид кальция 0-15; оксид магния 0-15; оксид натрия 0-20; оксид бора 0-15; силанольные группы SiO(OH)2 0,5-5, при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность от 2 до 50 м2 на 1 грамм его массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна. В результате использования предлагаемого стеклотканого наполнителя в производстве стеклополимерных композиционных материалов достигается улучшение физико-механических свойств композиционных материалов, в частности прочности при изгибе и межслоевом сдвиге, улучшается водостойкость.
Стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов, содержащий стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия, отличающийся тем, что наполнитель сформирован из волокон, на поверхности которых в процессе химической обработки созданы силанольные группы SiO(OH)2 при следующем составе стекловолокна, мас.%:
при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность 2 - 50 м на 1 г своей массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале 0,001 - 0,01 доли от диаметра волокна.
СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА | 1992 |
|
RU2077515C1 |
ЛИСТОВОЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1991 |
|
RU2021303C1 |
SU 916461 A, 30.03.1982 | |||
Стекло | 1976 |
|
SU617397A1 |
SU 96109700 A, 27.08.1998 | |||
US 4381347 A, 26.04.1983 | |||
US 4312952 A, 26.01.1982. |
Авторы
Даты
2005-01-27—Публикация
2004-01-27—Подача