СТЕКЛОВОЛОКНИСТЫЙ АРМИРУЮЩИЙ ТКАНЫЙ НАПОЛНИТЕЛЬ СТЕКЛОПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ Российский патент 2005 года по МПК F16L9/10 C03C13/02 

Описание патента на изобретение RU2245477C1

Изобретение относится к химической промышленности, преимущественно к технологии стекловолокнистых материалов, которые используют в качестве армирующего наполнителя при производстве композиционных материалов на основе термореактивных и термопластичных полимерных связующих.

Известно использование в качестве армирующего наполнителя различного рода листовых материалов в виде рубленых стекловолокон (см. патент РФ 2021303, опубл. 15.10.1994).

Использование данного армирующего наполнителя позволяет получать стеклополимерные композиционные материалы с улучшенной водостойкостью (водонепроницаемостью). Однако механические свойства материалов с таким армирующим наполнителем недостаточно высоки.

Наиболее близким к изобретению по технической сущности и достигаемому результату является стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия (см. патент РФ 2077515, опубл. 20.04.1997).

Однако данное стекловолокно не позволяет создать стеклополимерные композиционные материалы с требуемыми физико-механическими свойствами.

Задачей, на решение которой направлено настоящее изобретение, является повышение физико-механических свойств стеклополимерных композиционных материалов, в частности прочности при изгибе и межслоевом сдвиге.

Указанная задача решается за счет того, что стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов содержит стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия, при этом наполнитель сформирован из волокон, на поверхности которых в процессе химической обработки созданы силанольные группы SiO(OH)2, при следующем составе стекловолокна (мас.%):

диоксид кремния 50-99;

оксид алюминия 1-20;

оксид кальция 0-17;

оксид магния 0-15;

оксид натрия 0-20;

оксид бора 0-15;

силанольные группы SiO(OH)2 0,5-5,0

при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность от 2 до 50 м2 на 1 грамм своей массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна.

Анализ стекловолокнистых армирующих тканых наполнителей, подвергнутых различным степеням поверхностной химической обработки, показал, что изменение химического состава стекловолокна в приповерхностном слое и развиваемая в процессе его обработки удельная поверхность оказывают существенное влияние на физико-механические свойства конечного продукта - стеклополимерного композиционного материала, особенно, на основе термопластичных связующих.

В ходе исследования роли химической обработки тканого армирующего наполнителя из стекловолокон указанного выше химического состава было установлено, что развитие его удельной поверхности до значений от 2 до 50 м2 на грамм массы наполнителя позволяет улучшить такие показатели стеклополимерного композиционного материала, как прочность при изгибе и при межслоевом сдвиге. Уменьшение удельной поверхности ниже указанного диапазона, а также ее увеличение выше уровня верхней границы приводит к снижению прочности при изгибе и при межслоевом сдвиге. Причиной существования такого преимущественного интервала оптимальных значений удельной поверхности стекловолокнистого тканого армирующего наполнителя (2-50 м2/г) по-видимому является конкуренция двух факторов: 1 - упрочнение конечного изделия (стеклополимерного композиционного материала) за счет увеличения сил межфазового сцепления (в связи с развитием шероховатости наполнителя); 2 - снижение механических характеристик самого наполнителя при его химической обработке.

Химическая обработка стекловолокнистого армирующего тканого наполнителя с образованием в приповерхностном слое волокон силанольных групп SiO(OH)2 позволяет добиться усиления не только механического сцепления между наполнителем и полимерным связующим, но и усилить адгезию в межфазовой границе за счет образования прочных межмолекулярных связей с химически активными силанольными группами. При анализе эффективности действия этого фактора установлено, что оптимальные значения физико-механических характеристик стеклополимерных композиционных материалов достигаются при содержании в стеклотканом наполнителе силанольных групп в интервале 0,5-5%, при этом толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна. При выходе за значения верхних границ обозначенных интервалов увеличивается вероятность появления на поверхности стекловолокон опасных очагов разрушения, что приводит к росту дефектности армирующего стекловолокна с соответствующим снижением разрывной прочности стекловолокон и композиционного материала в целом. При уменьшении концентрации силанольных групп и глубины их проникновения в волокно за нижнюю границу эффект химической и механической активации стекловолокнистого тканого наполнителя становится незначительным и не сопровождается заметным улучшением механических характеристик конечного изделия - стеклополимерного композиционного материала.

Пример 1 (базовый пример сравнения). При изготовлении образца стеклополимерного композиционного материала в качестве наполнителя использована стеклоткань марки Э-180 с диаметром элементарного волокна 7 микрон, имеющая следующий химический состав: SiO2 - 53%, Аl2О3 - 15%, CaO - 17%, MgO - 4%, В2О3 - 10%, Na2O - 0,5%. Перед изготовлением композита стеклоткань термически обработана для удаления технологического замасливателя. Химической обработке стеклоткань не подвергалась, в связи с чем силанольные группы в ее составе отсутствуют, а удельная поверхность составляет 0.5 м2/г, что соответствует гладкой геометрической поверхности волокон. Образец стеклокомпозиционного материала изготавливался из 14 слоев указанной армирующей ткани. Слои этого тканого наполнителя перекладывались полиамидной пленкой ПК-4 и прессовались при температуре 225 °С и давлении 2МПа. Изгибная прочность изготовленных образцов стеклополимерного композита - 140 МПа, сдвиговая прочность - 9.3 МПа, суточное водопоглощение - 2.57%.

Пример 2. Те же условия приготовления образца стеклополимерного композита, которые описаны в Примере 1: 14 слоев армирующей ткани Э-180 с выжженным технологическим замасливателем. Армирующая стеклоткань подвергнута предварительной химической обработке, в результате которой удельная поверхность развита до уровня 18-20 м2/г, содержание силанольных групп доведено до 1,5-2%, глубина их расположения в приповерхностном слое волокна составила 0,02-0,03 микрона. Изготовленные таким образом образцы стеклотканого наполнителя перекладываются полиамидной пленкой ПК-4 и прессуются при температуре 225 °С и давлении 2 МПа. Изгибная прочность образцов - 200 МПа (улучшение характеристики по сравнению с базовым образцом на 43%), сдвиговая прочность - 15.3 МПа (улучшение на 64%), суточное водопоглощение - 1.87% (улучшение на 30%).

Пример 3. Те же условия приготовления образца стеклополимерного композита, которые описаны в Примерах 1,2: 14 слоев армирующей ткани Э-180 с выжженным технологическим замасливателем. Армирующая стеклоткань подвергнута предварительной химической обработке, в результате которой удельная поверхность развита до уровня 45-50 м2/г, содержание силанольных групп доведено до 4-5%, глубина их расположения в приповерхностном слое волокна составила 0,06-0,07 микрона. Изготовленные таким образом образцы стеклотканого наполнителя перекладываются полиамидной пленкой ПК-4 и прессуются при температуре 225°С и давлении 2 МПа. Изгибная прочность образцов - 145 МПа (незначительное улучшение этой характеристики), сдвиговая прочность - 9.3 МПа (характеристика не изменилась), суточное водопоглощение - 1.80% (улучшение на 34%).

Пример 4. При тестировании образцов стеклополимерных композитов со стекловолокнистым армирующим тканым наполнителем с более глубокой химической обработкой (удельная поверхность более 50 м2/г, содержание силанольных групп более 5%, глубина их проникновения более 0,07 микрона) наблюдалось снижение механических характеристик по сравнению с базовым объектом (однако, при этом водостойкость стеклокомпозита продолжала возрастать с углублением химической обработки наполнителя).

Как показал проведенный анализ физико-химических, механических и технологических свойств предлагаемого стекловолокнистого армирующего тканого наполнителя с указанными выше отличительными признаками, его использование в производстве стеклополимерных композиционных материалов позволит улучшить потребительские свойства этих изделий (прочность, водостойкость, сопротивляемость воздействиям агрессивных сред) на 30-60%. Предлагаемый стекловолокнистый армирующий тканый наполнитель может быть использован при создании новых стеклополимерных композиционных материалов в химической, нефтехимической индустрии, машиностроении, электронике и в других отраслях промышленности, а также при изготовлении труб.

Похожие патенты RU2245477C1

название год авторы номер документа
СТЕКЛО ДЛЯ ПРОИЗВОДСТВА СТЕКЛОВОЛОКНА И ВЫСОКОТЕМПЕРАТУРНОЕ КРЕМНЕЗЕМНОЕ ВОЛОКНО НА ЕГО ОСНОВЕ 2000
  • Журба Э.Н.
  • Лавринович И.А.
  • Трофимов А.Н.
  • Шумский В.И.
RU2165393C1
СТЕКЛОПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Барелко Виктор Владимирович
  • Кирюхин Дмитрий Павлович
  • Кущ Павел Прокофьевич
  • Кичигина Галина Анатольевна
  • Дорохов Виктор Григорьевич
  • Быков Леонид Алексеевич
RU2577053C2
КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ДИОКСИДА СЕРЫ В ТРИОКСИД СЕРЫ 1999
  • Симонова Л.Г.
  • Бальжинимаев Б.С.
  • Кильдяшев С.П.
  • Макаренко М.Г.
  • Чумаченко В.А.
  • Меняйлов Н.Н.
  • Барелко В.В.
  • Быков Л.А.
  • Колосов В.В.
  • Ракчеева Л.В.
  • Ваткеева Е.Н.
RU2158633C1
Композиционный материал из углеткани и фосфатного связующего и способ его получения 2023
  • Андрианова Кристина Александровна
  • Амирова Лилия Миниахмедовна
  • Гайфутдинов Амир Марсович
  • Таишев Булат Рустамович
RU2808804C1
Способ получения композиционного высокомодульного материала на основе бутадиенового эластомера с гибким армирующим элементом 2022
  • Копырин Михаил Михайлович
  • Марков Айтал Еремеевич
  • Дьяконов Афанасий Алексеевич
  • Данилова Сахаяна Николаевна
  • Лебедев Михаил Петрович
  • Лазарева Надежда Николаевна
  • Туисов Алексей Геннадьевич
  • Охлопкова Айталина Алексеевна
  • Кычкин Анатолий Константинович
  • Кычкин Айсен Анатольевич
RU2793691C1
СТЕКЛО ДЛЯ ПРОИЗВОДСТВА НЕПРЕРЫВНОГО СТЕКЛОВОЛОКНА 2019
  • Зуева Валентина Николаевна
  • Хазанов Виктор Евсеевич
  • Трофимов Александр Николаевич
  • Трофимов Николай Николаевич
  • Бейнарович Ольга Францевна
RU2709042C1
ВОЛОКНИСТЫЙ НАНОЦЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Юдович Борис Эмануилович
  • Зубехин Сергей Алексеевич
  • Джантимиров Христофор Авдеевич
RU2595284C1
КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ С ИЗБЫТКОМ КИСЛОРОДА ОТ ОКСИДОВ АЗОТА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ 2001
  • Бальжинимаев Б.С.
  • Барелко В.В.
  • Кильдяшев С.П.
  • Макаренко М.Г.
  • Симонова Л.Г.
  • Токтарев А.В.
  • Арендарский Д.А.
  • Борисова Т.В.
RU2186621C1
НАНОСТРУКТУРИРОВАННЫЙ СТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2017
  • Морозов Руслан Сергеевич
  • Колодницкая Наталья Владимировна
  • Осипов Василий Михайлович
RU2668030C1
СВЯЗУЮЩЕЕ ДЛЯ СТЕКЛОПЛАСТИКА И ПУЛТРУЗИОННЫЙ ПРОФИЛЬ ИЗ СТЕКЛОПЛАСТИКА 2012
  • Никулина Елена Аркадьевна
  • Микушин Владимир Иванович
RU2502602C1

Реферат патента 2005 года СТЕКЛОВОЛОКНИСТЫЙ АРМИРУЮЩИЙ ТКАНЫЙ НАПОЛНИТЕЛЬ СТЕКЛОПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Изобретение относится к химической промышленности, преимущественно к производству стекловолокнистых материалов, предназначенных для изготовления стеклополимерных композитов. Стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов состоит из стекловолокна, содержащего в своем составе диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид бора, оксид натрия, а также силанольные группы SiO(OH)2, образованные в поверхностном слое стекловолокна в процессе химической его обработки. Стекловолокно имеет следующий состав (мас.%): диоксид кремния 50-99; оксид алюминия 1-20; оксид кальция 0-15; оксид магния 0-15; оксид натрия 0-20; оксид бора 0-15; силанольные группы SiO(OH)2 0,5-5, при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность от 2 до 50 м2 на 1 грамм его массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале от 0,001 до 0,01 доли от диаметра волокна. В результате использования предлагаемого стеклотканого наполнителя в производстве стеклополимерных композиционных материалов достигается улучшение физико-механических свойств композиционных материалов, в частности прочности при изгибе и межслоевом сдвиге, улучшается водостойкость.

Формула изобретения RU 2 245 477 C1

Стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов, содержащий стекловолокно, включающее в свой состав диоксид кремния и оксиды алюминия, кальция, магния, бора и натрия, отличающийся тем, что наполнитель сформирован из волокон, на поверхности которых в процессе химической обработки созданы силанольные группы SiO(OH)2 при следующем составе стекловолокна, мас.%:

Диоксид кремния50-99Оксид алюминия1-20Оксид кальция0-17Оксид магния0-15Оксид натрия0-20Оксид бора0-15Силанольные группы SiO(OH)20,5-5,0

при этом стекловолокнистый армирующий тканый наполнитель имеет удельную поверхность 2 - 50 м на 1 г своей массы, а толщина поверхностного слоя элементарного волокна, на котором сконцентрированы силанольные группы, находится в интервале 0,001 - 0,01 доли от диаметра волокна.

Документы, цитированные в отчете о поиске Патент 2005 года RU2245477C1

СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА 1992
  • Будов В.М.
  • Федорова В.А.
  • Белова Н.А.
  • Токарев В.Д.
  • Савинов Б.А.
  • Мельников В.А.
RU2077515C1
ЛИСТОВОЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1991
  • Эллиотт Томас Джордж[Gb]
RU2021303C1
SU 916461 A, 30.03.1982
Стекло 1976
  • Будов Виктор Михайлович
SU617397A1
SU 96109700 A, 27.08.1998
US 4381347 A, 26.04.1983
US 4312952 A, 26.01.1982.

RU 2 245 477 C1

Авторы

Барелко В.В.

Смирнов Ю.Н.

Онищенко В.Я.

Трофимов Н.Н.

Натрусов В.И.

Шацкая Т.Е.

Ушаков А.Е.

Сорина Т.Г.

Хайретдинов А.Х.

Кленин Ю.Г.

Сивый Бронислав Петрович

Данилов Константин Егорович

Казаковцев Николай Аркадьевич

Мороз Михаил Давидович

Даты

2005-01-27Публикация

2004-01-27Подача