СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬКОБАЛЬТОВОЙ РУДЫ Российский патент 2005 года по МПК C22B23/00 

Описание патента на изобретение RU2245933C1

Изобретение относится к способам извлечения никеля и кобальта из руд и может быть использовано при переработке окисленных никелевых и кобальтовых руд.

Известен способ автоклавного сернокислотного выщелачивания окисленных руд [1]. По этому способу, например, на заводе Моа Бей рудную пульпу, содержащую 45% твердого, подогревают в нагревательных колоннах острым паром, а затем выщелачивают в цепочке из четырех паролифтных автоклавов. Обработку ведут при температуре 240-250°С (давление около 4,0 МПа). Необходимую серную кислоту (98%-ную) в количестве примерно 240 кг/т руды подают в первый автоклав. Перемешивание в автоклавах осуществляют острым паром. Время выщелачивания 1-2 часа, при этом в раствор переходит около 95% никеля и кобальта. Недостатки процесса - высокая стоимость аппаратуры для автоклавного выщелачивания, сложность эксплуатации автоклавов.

Наиболее близок к предлагаемому техническому решению способ извлечения никеля и кобальта выщелачиванием серной кислотой при атмосферном давлении никелевых латеритовых руд с высоким содержанием серпентина [2]. По этому способу при атмосферном давлении проводят выщелачивание никеля и кобальта из тонкоизмельченной распульпованной в воде руды (содержание руды 15-33%) серной кислотой при температуре 80-100°С. Расход серной кислоты составляет 80-100% от веса сухой руды. Продолжительность выщелачивания - 1 час. Испытаны семь образцов руды с содержанием 1,92-3,34% никеля и 0,02-0,18% кобальта. Извлечение в раствор колебалось для никеля в пределах 71-96%, для кобальта - 95-97%. Избыток кислоты нейтрализуют известняком для частичного выделения железа. Недостатки способа - значительный избыточный расход кислоты, широкий интервал колебаний извлечения никеля из различных проб руд и, кроме того, сложность отделения тонкоизмельченной выщелаченной руды от товарного раствора.

Техническим результатом предлагаемого технического решения является достижение высокой степени извлечения из окисленной руды никеля и кобальта, сокращение расхода серной кислоты и получение гранулированного сульфатизированного продукта, не разрушающегося при его выщелачивании водой.

Технический результат достигается тем, что согласно предлагаемому способу окисленную руду гранулируют с концентрированной серной кислотой, используемой в количестве, стехиометрически необходимом для реакции с содержащимися в руде взаимодействующими с кислотой оксидами металлов, и полученные гранулы прокаливают в трубчатой вращающейся печи при температуре 650-750°С в течение 2,5-3,0 часов для разложения основной части сульфата железа (III) до остаточного содержания железа в - гранулах (в виде сульфата) 1,0-3,9%. Выделяющиеся при этом оксиды серы дополнительно сульфатизируют оксиды никеля и кобальта. Для увеличения извлечения никеля и кобальта перед прокалкой целесообразно провести сульфатизацию гранул при температуре 200-250°С в течение 1 часа.

Из прокаленных гранул с содержанием растворимого железа 1,0-3,9% выщелачивают никель и кобальт в количестве до 92-96 и 93-95% соответственно, причем разрушения гранул не происходит, что существенно облегчает отделение раствора от твердого выщелаченного остатка.

Пример 1 (по прототипу)

В водную пульпу окисленного концентрата (с содержанием, %, 1,25 Ni; 0,44 Со; 17,9 Fe) с соотношением Т:Ж=1:3 ввели серную кислоту (в пересчете на 100%-ную) в количестве 0,92 т/т руды. Предварительные расчеты показали, что для перевода в сульфаты содержащихся в руде металлов (Ni, Co, Fe, Mg и др.) по стехиометрическому соотношению необходимо затратить кислоты 0,5-0,55 т/т руды. Таким образом реальный расход кислоты в 1,67-1,84 раза превышал стехиометрически необходимый.

Выщелачивание вели при температуре 90°С в течение 1 часа. В раствор извлечено, %, 37,9 Ni; 19,1 Со; 21,0 Fe.

Пример 2

Окисленную никелевую руду (пример 1) загранулировали с серной кислотой при расходе последней 0,49-0,59 т/т руды. Гранулы поместили в трубчатую вращающуюся печь, нагретую до температуры 650°С и прокаливали в течение 3,5 часов. После прокалки гранулы выщелачивали водой при соотношении Т:Ж=1:3 в течение 3 часов. Результаты экспериментов приведены в таблице 1.

Таблица 1
Влияние расхода H2SO4 на качество прокаленных гранул
Расход H2SO4, Извлечение в раствор, %Содерж. раств. Fe в гранулах, %Поведение гранул при выщелачивт/тNiСоFe  0,5984.095.038.45,6разрушились0,5688.895.527.04,1частично разруш.0,4988.889.425.83,9не разрушились

Таким образом, высокое остаточное содержание (более 3,9% Fe) растворимых сульфатов железа в гранулированном прокаленном продукте приводит к разрушению гранул при выщелачивании металлов

Пример 3

Окисленную никелевую руду (пример 1) загранулировали с серной кислотой при расходе последней 0,35-0,51 т/т руды и подвергли термической обработке в муфельной печи в следующем режиме: нагрев до 200°С (0,5 ч) - сульфатизация при нагревании от 200 до 250°С (1 ч) - прокалка гранул при нагревании от 250 до 700°С (3,5 ч). Полученные гранулы выщелачили водой при соотношении Т:Ж=1:3 в течение 3 часов. Результаты экспериментов приведены в таблице 2

Как видно из таблицы, извлечение никеля в раствор при том же расходе серной кислоты, что и в примере 2 (0,49 т/т), выросло до 92,8-96,0%. Этот результат можно объяснить только введением дополнительной операции сульфатизации при 200-250°С в течение 1 часа.

Таблица 2
Влияние расхода Н2SO4 на извлечение металлов при введении промежуточной операции сульфатизации
Расход H2SO4, т/тИзвлечение в раствор, % NiСоFe0,3568,874,40,50,4892,890,712,20,5196,093,018,8

Пример 4

Окисленную никелевую руду (пример 1) загранулировали с серной кислотой при расходе последней 0,47 т/т руды. Полученные гранулы прокалили в трубчатой вращающейся печи в течение 2,3-3,0 часов при температурах от 600 до 750°С, а затем выщелачили водой при соотношении Т:Ж=1:3 в течение 3 часов. Результаты проведенных экспериментов приведены в таблице 3.

Таблица 3
Результаты прокалки гранул в трубчатой вращающейся печи
Температура, °СИзвлечение в раствор, %Содерж раств Fe в гранулах, %Гранулы при выщелачивании NiСоFe  60086,495,227,44,1частично разрушились65095,293,023,83,6незначительно разрушились70092,095,36,41,0не разрушились7502,24,60,10,004не разрушились

Перемешивание гранул в процессе их прокалки в трубчатой вращающейся печи способствует более полному (ср. табл. 2 и 3) и быстрому разложению сульфата железа. Наилучшие результаты по извлечению никеля в раствор при выщелачивании получены при температуре прокалки 650°С. Дальнейшее повышение температуры (до 700°С) приводит к более полному разложению сульфата железа и, по-видимому, частичному экранированию соединений никеля. Вследствие этого наблюдается некоторое снижение извлечения никеля. Таким образом, для получения гранул, не разрушающихся в процессе выщелачивания и, одновременно, высокого извлечения никеля и кобальта в раствор, остаточное содержание растворимого железа в прокаленных гранулах (в виде сульфата) должно составлять 1,0-3,9%.

Как видно из приведенных примеров, при использовании предлагаемого способа в раствор в результате выщелачивания извлекается до 92-96% никеля, до 93-95% кобальта при относительно низком (6,4-25,8%) извлечении железа. Полученные прокаленные гранулы не разрушаются в процессе выщелачивания металлов.

Техническая эффективность предлагаемого способа переработки окисленной никелевой руды заключается в том, что в результате использования процессов грануляции окисленной никелевой руды с серной кислотой, твердофазной сульфатизации руды и прокалки гранул обеспечивается хорошее взаимодействие серной кислоты и соединений извлекаемых ценных металлов. Расход серной кислоты снижается до стехиометрически необходимого для реакции с содержащимися в руде взаимодействущими с кислотой оксидами металлов. Прокалка гранул позволяет не только резко снизить количество железа, переходящего в раствор при выщелачивании, но и получить гранулы, не разрушающиеся (при содержании растворимого железа в них в пределах 1,0-3,9%) в процессе выщелачивания металлов, что резко облегчает последующее отделение товарного раствора от выщелоченной руды.

Для проведения указанных процессов применяется несложное по конструкции и значительно более дешевое и удобное в эксплуатации оборудование, чем автоклавы.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель. М.: ООО "Наука и технологии ", 2001. Т.2: Окисленные никелевые руды.

2. Пат. 6379637 США, МПК7 С 22 В 23/00. Direct atmospheric leaching of highly-serpentinized saprolitic nickel laterite ores with sulphuric acid. / Curlook Walter, Curlook W. // Опубл. 30.04.2002, НПК 423 /150.4.

Похожие патенты RU2245933C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ НИКЕЛЯ И ДРУГИХ МЕТАЛЛОВ ИЗ ОКИСЛЕННОЙ РУДЫ 2003
  • Синегрибов В.А.
  • Кольцов В.Ю.
  • Щукин М.И.
  • Мельник Д.В.
  • Батшев В.И.
RU2245932C1
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬКОБАЛЬТОВОЙ РУДЫ 2004
  • Синегрибов Виктор Андреевич
  • Кольцов Василий Юрьевич
  • Логвиненко Изабелла Алексеевна
  • Мельник Дмитрий Викторович
  • Батшев Василий Иванович
RU2287597C2
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬКОБАЛЬТОВОЙ РУДЫ 2003
  • Синегрибов В.А.
  • Кольцов В.Ю.
  • Мельник Д.В.
  • Батшев В.И.
RU2245934C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ОКИСЛЕННОЙ СИЛИКАТНОЙ НИКЕЛЕВОЙ РУДЫ 2014
  • Перепелицын Владимир Алексеевич
  • Куталов Виктор Геннадьевич
  • Кочетков Виктор Викторович
  • Мерзляков Виталий Николаевич
  • Панов Евгений Валерьевич
RU2557863C1
Способ переработки окисленной никель-кобальтовой руды 2020
  • Лобанов Владимир Геннадьевич
  • Полыгалов Сергей Эдуардович
  • Колмачихина Ольга Борисовна
  • Маковская Ольга Юрьевна
  • Савеня Михаил Васильевич
  • Шадрина Екатерина Александровна
RU2756326C2
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬ-, КОБАЛЬТ-, ЖЕЛЕЗО-, МАГНИЙСОДЕРЖАЩЕЙ РУДЫ 2009
  • Нестеров Юрий Васильевич
  • Канцель Алексей Викторович
  • Канцель Антон Алексеевич
  • Канцель Владимир Алексеевич
  • Летюшов Александр Александрович
  • Лихникевич Елена Германовна
RU2393250C1
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬ-КОБАЛЬТОВОЙ РУДЫ 2018
  • Зарков Александр Валентинович
  • Гуляев Сергей Владимирович
  • Сосновский Михаил Георгиевич
RU2694188C1
СПОСОБ ПЕРЕРАБОТКИ УРАНОВОЙ РУДЫ 2008
  • Кольцов Василий Юрьевич
  • Синегрибов Виктор Андреевич
  • Юдина Татьяна Борисовна
  • Калашников Алексей Владимирович
  • Щукина Елена Владимировна
RU2385963C1
СПОСОБ ПЕРЕРАБОТКИ ОСТАТКОВ СИНТЕЗА КАРБОНИЛЬНОГО ПРОИЗВОДСТВА НИКЕЛЯ 2000
  • Мироевский Г.П.
  • Попов И.О.
  • Козырев В.Ф.
  • Келлер В.В.
  • Шаньгин О.В.
  • Платонов С.В.
  • Смирнов В.И.
  • Кожевников В.М.
  • Макаров В.В.
  • Шкондин М.А.
  • Зайцев В.В.
RU2159294C1
СПОСОБ ПЕРЕРАБОТКИ ШЛИФОТХОДОВ ОТ ПРОИЗВОДСТВА ПОСТОЯННЫХ МАГНИТОВ 2014
  • Кольцов Василий Юрьевич
  • Калашников Алексей Владимирович
  • Щукина Елена Владимировна
  • Кузнецов Иван Владимирович
  • Трубаков Юрий Михайлович
RU2574543C1

Реферат патента 2005 года СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОЙ НИКЕЛЬКОБАЛЬТОВОЙ РУДЫ

Изобретение может быть использовано для извлечения никеля и кобальта из руд. Способ включает в себя грануляцию руд с серной кислотой в стехиометрическом количестве. Гранулы прокаливают при температуре 650-700°С в течение 2,5-3,0 часов, после чего проводят выщелачивание водой. Прокалку гранул ведут до содержания растворимого железа в пределах 1,0-3,9%. Гранулы перед прокалкой сульфатизируют при температуре 200-250°С в течение 1 часа, обеспечивается высокая степень извлечения металлов из окисленной никелькобальтовой руды, сокращение расхода серной кислоты и получение гранулированного сульфатизированного продукта, не разрушающегося при его выщелачивании водой. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 245 933 C1

1. Способ переработки окисленной никелькобальтовой руды, включающий обработку руды серной кислотой с переводом в раствор растворимых сульфатов, отличающийся тем, что руду гранулируют с серной кислотой в стехиометрически необходимом количестве, гранулы прокаливают при температуре 650-700°С в течение 2,5-3,0 ч, после чего проводят выщелачивание водой.2. Способ по п.1, отличающийся тем, что прокалку гранул ведут до содержания растворимого железа в них в пределах 1,0-3,9%.3. Способ по п.1, отличающийся тем, что гранулы перед прокалкой сульфатизируют при температуре 200-250°С в течение 1 ч.

Документы, цитированные в отчете о поиске Патент 2005 года RU2245933C1

US 6379637 С1, 30.04.2002
Способ обработки никелевых руд 1935
  • Кузнецов А.Н.
SU50401A1
2000
RU2161658C1
Способ измерения синхронных индуктивных сопротивлений явнополюсного синхронного генератора 1982
  • Бауман Эдгар Арнольдович
SU1064248A1
US 3809549 А, 07.05.1974
US 4410498 А, 18.10.1983.

RU 2 245 933 C1

Авторы

Синегрибов В.А.

Кольцов В.Ю.

Калашников А.В.

Мельник Д.В.

Батшев В.И.

Даты

2005-02-10Публикация

2003-07-28Подача