Изобретение относится к переработке нерудного сырья, в частности вермикулита, в стеклокристаллические материалы, которые могут быть использованы в стройиндустрии, а также в алюминиевой промышленности в качестве огнеупорных материалов для футеровки ванн электролизеров.
Существует способ получения стеклокристаллических материалов путем варки стекла, отливки его в формы и кристаллизации полученных заготовок в муфельных печах с целью выделения кристаллических фаз [1] (Д.У.Туляганов, Ш.Ю.Абдуллаев, М.Э.Махкамов, М.Х.Арипова. “Стекло для биосовместимого стеклокристаллического материала”. А.с. 1742239 SU. Бюл. №23 от 23.06.92 г.). В данном способе порошкообразную смесь, состоящую из оксидов SiO2, Аl2О3, MgO, Fе2O3, Мn2O3, СаО, Р2O5, В2O3, варят в корундовых тиглях при температурах 1380-1450°С в течение 1 ч. Проваренное стекло отливают в формы и проводят кристаллизацию при температуре 850-1000°С в течение 1-2 ч. Наряду с кристаллизацией стекла в виде цельнолитых образцов возможна и термообработка стеклянных порошков.
Известен способ получения стеклокристаллического материала [2] (В.И.Бухмастов, В.М.Жестков, О.А.Пономарев. “Стекло для шлакоситалла”. А.с. 1123996 SU. Бюл. №42 от 15.11.84) путем варки стекла, включающего SiO2, Аl2О3, СаО, MgO, Fе2O3, MnO, S-2 в восстановительной среде при 1450±10°С в течение 2 ч. Термообработку проводят по двухступенчатому режиму путем выдержки в заданном интервале температур в течение 4 ч. Данный способ выбран в качестве прототипа по максимальному совпадению существенных признаков. К недостаткам способа следует отнести многоступенчатость и длительность процесса термообработки, что ограничивает возможность использования данного способа.
В основу заявляемого изобретения положена задача разработки способа получения стеклокристаллического материала с малым временем термообработки на основе вермикулита, стабилизированного по составу методом восстановительного плавления, чтобы расширить возможности их применения в качестве строительных и огнеупорных материалов в алюминиевой промышленности.
Сущность заявляемого способа заключается в том, что вермикулит переводят в рентгеноаморфное, стабилизированное по составу состояние по способу [3] (RU 2132306, 6 С 03 С 11/00), путем предварительного доведения содержания оксида кремния и оксида кальция в исходной шихте до массового отношения SiO2/СаО, равного интервалу 1-2, а содержание углерода - до 3 мас.%, плавления в восстановительной среде при температуре 1580-1610°С, отделения металлической части расплава, содержащей железо, последующего охлаждения силикатной части расплава в режиме термоудара отливом в воду и получения рентгеноаморфного, стабилизированного по химическому составу, обедненного железом материала (пеносиликата) следующего состава, мас.%: SiO2 37,58; Аl2O3 11,34; Fе2O3 0,05; SO3 0,3; СаО 33,29; MgO 17,2; Na2O 0,16; K2O 0,08.
Термографическое исследование пеносиликата, обладающего избыточным запасом энтальпии, показывает, что при переходе его из аморфного состояния в кристаллическое тепловыделение составляет более половины значения теплоты плавления. После нагрева одного из краев образца из пеносиликата до температуры начала кристаллизации в нем возникает локальная область закристаллизованной фазы, и вдоль образца распространяется фронт волны кристаллизации, т.е. самораспространяющаяся кристаллизация, поддерживаемая за счет выделяющейся в зоне кристаллизации тепловой энергии фазового перехода.
Пеносиликат измельчается до крупности 80 мкм; добавляется вода в количестве 10 мас.% свыше 100 мас.% порошка, формуются образцы и помещаются в печь, нагревание которой происходит до температуры 900°С со скоростью 20°С/мин с последующим охлаждением. При температуре 820°С происходит зарождение фронта волны кристаллизации и дальнейшее его распространение вдоль образца со скоростью 13 мм/мин. При этом температура образца во фронте волны увеличивается на 200°С по сравнению с температурой в печи. Скорость изменения температуры образца в процессе распространения фронта волны достигает 300°С/мин. При достижении 900°С скорость изменения температуры образца становится равной скорости изменения температуры в печи. Это свидетельствует об окончании процесса в режиме самораспространяющейся кристаллизации. Общее время термообработки составляет 45 минут. Предлагаемый способ получения стеклокристаллического материала на основе вермикулита поясняется конкретным примером.
Пример. В 400 г вермикулита вводят 15 г углерода, 167 г известняка, плавят в восстановительной среде при температуре 1580-1610°С. Происходит разделение расплава на металлическую часть, содержащую железо, опускающуюся на дно ванны печи, и силикатную часть, которую охлаждают в режиме термоудара отливом в воду с получением пеносиликата. Пеносиликат измельчают до крупности 80 мкм, добавляют 10 мас.% воды сверх 100 мас.% пеносиликата, формуют изделия, помещают его в печь, которую нагревают со скоростью 20°С/мин до температуры 900°С в течение 45 мин с последующим охлаждением. Полученный стеклокристаллический материал имеет следующие характеристики:
- плотность 2,3 г/см3;
- прочность на сжатие 135 МПа;
- температура использования 1200°С.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КОРДИЕРИТА НА ОСНОВЕ ДУНИТА | 2008 |
|
RU2378225C2 |
СПОСОБ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТА | 2012 |
|
RU2524585C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СТЕКЛОМАТЕРИАЛА С НИЗКИМ СОДЕРЖАНИЕМ МАРГАНЦА ИЗ БЕДНЫХ И ВЫСОКОФОСФОРИСТЫХ МАРГАНЦЕВЫХ РУД | 2007 |
|
RU2365546C2 |
СИНТЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ЮВЕЛИРНОЙ ПРОМЫШЛЕННОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2010 |
|
RU2426488C1 |
ПЛАВЛЕНЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ | 2008 |
|
RU2371422C1 |
СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛЬНОЙ ВАТЫ ИЗ ОТХОДОВ ПРОМЫШЛЕННОСТИ | 2003 |
|
RU2263082C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ СТЕКЛОМАТЕРИАЛОВ ИЗ НЕРУДНОГО СЫРЬЯ | 2001 |
|
RU2211811C2 |
ЗАЩИТНОЕ СТЕКЛОКРИСТАЛЛИЧЕСКОЕ ПОКРЫТИЕ ДЛЯ СТАЛИ | 2010 |
|
RU2453512C1 |
Стеклокристаллический материал с высоким модулем упругости и способ его получения | 2017 |
|
RU2660672C1 |
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ | 2020 |
|
RU2756886C1 |
Способ получения стеклокристаллического материала на основе вермикулита осуществляют путем смешивания его с известняком, восстановительного плавления, выделения силикатной части расплава, перевода ее в рентгеноаморфное состояние отливом в воду и одностадийной термообработки. Для уменьшения времени термообработка проводится в режиме самораспространяющейся кристаллизации, заключающейся в зарождении фронта волны повышенной температуры за счет энергии фазового перехода и ее распространения вдоль образца со скоростью 13 мм/мин. Техническая задача – снижение времени термообработки.
Способ получения стеклокристаллического материала на основе вермикулита путем смешивания его с известняком, восстановительного плавления, выделения силикатной части расплава, содержащей SiO2, Аl2О3, Fе2O3, CaO, MgO, SO3, Na2O, К2O, перевода ее в рентгеноаморфное состояние, измельчения до крупности 80 мкм, формования и термообработки, отличающийся тем, что для уменьшения времени термообработки она осуществляется в режиме самораспространяющейся кристаллизации, заключающейся в зарождении фронта волны повышенной температуры за счет энергии фазового перехода и ее распространения вдоль образца со скоростью 13 мм/мин при следующем соотношении компонентов, мас.%: SiO2 37,58; Аl2O3 11,34; Fе2O3 0,05; СаО 33,29; MgO 17,2; SO3 0,3; Na2O 0,16; K2O 0,08.
Стекло для шлакоситалла | 1982 |
|
SU1123996A1 |
1971 |
|
SU413001A1 | |
Стекло для биосовместимого стеклокристаллического материала | 1990 |
|
SU1742239A1 |
US 4892846 A, 09.01.1990 | |||
US 4853349 A, 01.08.1989. |
Авторы
Даты
2005-04-20—Публикация
2003-07-22—Подача