Изобретение относится к области получения полимерных конструкционных материалов, а точнее к получению прессовочных армированных материалов из термореактивных композиций на основе полиизоциануратов, обладающих произвольно регулируемым модулем упругости в непрерывном диапазоне от 3 до 2000 МПа.
Изобретение наиболее эффективно может быть использовано в производстве различных по конфигурации изделий, в которых без сварки, склейки и других известных способов соединения деталей достигается получение монолитной бесшовной конструкции с резким или плавным, линейным или нелинейным градиентом модуля упругости и обладающих упругими свойствами при любых значениях модуля в диапазоне от 3 до 2000 МПа. Это может быть производство валиков и шестерен, работающих бесшумно, в обувной промышленности для создания комфортной обуви, в которой растягивающие усилия воспринимает резиноподобная часть градиентного материала, а сжимающие - пластиковая (жесткая) часть. Материалы могут работать как амортизаторы, прокладки, мембраны, легко закрепляемые на периферии. Изобретение может быть использовано в радиопромышленности, в приборостроении, заменив существующие опоры различной аппаратуры.
Известна композиция [Авторское свидетельство СССР №1558941 (1990), C 08 L 75/04. Опубл. 23.04.1990. Бюл.№15. “Композиция полиизоциануратов”, авторы: Аскадский А.А, Панкратов В.А., Френкель Ц.М. и др.], включающая кремнийорганический карбофункциональный диизоцианат и катализатор - третичный амин в сочетании с альфа-окисью в качестве сокатализатора при следующих соотношениях компонентов в маc.ч.:
кремнийорганический карбофункциональный диизоцианат 100
третичный амин 0,1-0,2
альфа-окись 1,0-1,5
Материалы, полученные на основе этой композиции методом блочной термической полимеризации, обладают модулем упругости от 75 до 1700 МПа. Регулирование модуля упругости в этих композициях достигается путем изменения молекулярного веса кремнийорганического диизоцианата, получаемого из мономерных продуктов при многоступенчатом синтезе, включающем в себя обязательные обработки промежуточных и конечных продуктов различными методами. Синтез осуществлен в лабораторных масштабах.
Однако термодинамическая несовместимость кремнийорганического карбофункционального диизоцианата с ароматическими диизоцианатами приводит к фазовому расслоению композиции в процессе полимеризации. Это обуславливает невозможность получения упругих низкомодульных полимеров (с модулем упругости менее 75 МПа) и с непрерывным градиентом модуля упругости по одному из линейных размеров.
Известна композиция для получения полиизоциануратов [Патент РФ №2061708 (1993), C 08 G 9/00, C 08 L 9/00. Опубл.10.06.1996 г. Бюл.№16. “Композиция полиизоциануратов для полимерного материала с заданным модулем упругости”, авторы: Аскадский А.А, Панкратов В.А, Шворак В.А, Бычко К.А. и др.], включающая низкомолекулярный гибкоцепной полимер с концевыми гидроксильными группами и молекулярной массой (М) 1000-2500, ароматический диизоцианат и катализатор отверждения аминного типа в сочетании с альфа-окисью в качестве сокатализатора при следующем соотношении компонентов, маc.ч.:
ароматический диизоцианат 100
низкомолекулярный гибкоцепной полимер 17-517
катализатор отверждения 0,05-0,3
сокатализатор 0,5-6
Дополнительно по п.2 композиция может содержать волокнистый и/или порошкообразный минеральный наполнитель при следующем соотношении компонентов, маc.ч.:
ароматический диизоцианат 100
низкомолекулярный каучук 17-517
катализатор отверждения 0,05-0,3
сокатализатор 0,5-6
наполнитель 1,3-10,0
Материалы на основе этой композиции обладают модулем упругости от 3 до 2000 МПа, причем они сохраняют упругость в интервале температур от -50 до 100°С.
Как наиболее близкая по технической сущности, эта композиция выбрана нами в качестве прототипа.
Недостатки композиции-прототипа связаны с тем, что при ее использовании сетчатые полиизоциануратные полимеры в виде монолита с непрерывным градиентом модуля упругости от 3 до 2000 МПа получаются после заливки композиции в герметичную форму в процессе блочной термической полимеризации, осуществляемой путем постепенного многосуточного нагрева от комнатной температуры до конечной 160-200°С. Из-за высокой вязкости низкомолекулярного гибкоцепного полимера композицию при приготовлении необходимо нагревать и перемешивать в вакууме или заливку композиции в форму совмещать с одновременным вакуумированием, чтобы исключить ее вспенивание. Продолжительность тепловой обработки возрастает пропорционально объему полимеризующейся массы. Это связано с тем, что процесс полициклотримеризации вследствие экзотермичности реакции сопровождается заметным тепловыделением, пропорциональным объему полимеризующейся массы. Это может привести к неуправляемому подъему температуры и ускорению побочных реакций, отрицательно сказывающихся на монолитности получаемого в виде блока полимера, его структуре и свойствах [А.А.Аскадский, Л.М.Голенева, К.А.Бычко. Высокомолек. соед. А.1995. Т.37. №5. С.829]. Усадка, обусловленная протекающим химическим процессом, и термическая усадка, сопровождающая процесс, вызывают образование усадочных раковин на поверхности полимера. Из такой композиции-прототипа не могут быть получены конструкционные полимерные материалы с модулем, превышающим 1000-1200 МПа, т.к. вследствие частосетчатой структуры они становятся хрупкими и легко разрушаются под действием нагрузки. Поэтому с целью снижения хрупкости твердых полиизоциануратов в патенте-прототипе в п.2 в композицию вводят мелкодисперсные порошковые или волокнистые наполнители в очень небольшом количестве (1,3-10 мас.ч.). При этом ухудшаются технологические параметры композиции в связи с резким возрастанием ее вязкости, а условия превращения в готовый полимерный материал принципиально не изменяются. В результате процесс становится еще более трудоемким. Эти факторы в совокупности с высокой адгезией композиции-прототипа к традиционным материалам, из которых эти формы обычно изготавливаются, явились причиной того, что получаемые из нее материалы не нашли до сих пор практического применения.
Задачей настоящего изобретения является создание композиций для получения полимерных композиционных материалов на основе полиизоциануратов с произвольно регулируемым модулем упругости при сжатии в диапазоне от 3 до 2000 МПа, которые можно получить более технологичным способом и переработать в готовые изделия любой заданной формы промышленным способом горячего прессования. При этом они сохраняют присущий полиизоциануратным полимерам заданный диапазон модулей упругости и имеют лучшие физико-механические показателями.
Поставленная задача достигается тем, что композиция для получения полимерных конструкционных материалов с произвольно регулируемым модулем упругости при сжатии в диапазоне от 3 до 2000 МПа на основе полиизоциануратов, состоящая из низкомолекулярнго гибкоцепного полимера с концевыми гидроксильными группами и молекулярной массой от 1700 до 2200, ароматического диизоцианата, катализатора отверждения - диметилбензиламина в сочетании с эпоксидиановой смолой в качестве сокатализатора, содержит дополнительно высокопористый полимерный носитель и ацетон при следующем соотношении компонентов в мас.ч:
низкомолекулярный гибкоцепной полимер с концевыми гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-20
ацетон 55-30
высокопористый полимерный носитель 2,0-22,5
В качестве высокопористого носителя используют эластичный пенополиуретан при следующем соотношении компонентов в маc. ч.:
низкомолекулярный гибкоцепной полимер с концевыми гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-20
ацетон 55-40
эластичный пенополиуретан 3,5-10
В другом случае в качестве высокопористого полимерного носителя используют синтетический войлочный материал при следующем соотношении компонентов в маc. ч.:
низкомолекулярный гибкоцепной полимер c концевыми гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-10
ацетон 55-30
синтетический войлочный материал 2,0-22,5
В качестве низкомолекулярных гибкоцепных полимеров используют:
сополимер окиси пропилена и тетрагидрофурана с М 1700, бутадиеновый каучук с концевыми гидроксильными группами и М 2000-2500 или полипропиленгликоль с М 2000-2200.
В качестве ароматического диизоцианата используют 2,4-толуилендиизоцианат, 4,4' - дифенилметандиизоцианат.
В качестве эпоксидиановой смолы используют низкомолекулярный олигомер на основе эпихлоргидрина и 4,4'-дифенилолпропана с содержанием эпоксидных групп 20-22%.
Используемый в заявляемой композиции эластичный пенополиуретан марки ППУ-Э имеет открыто-ячеистую структуру, кажущуюся плотность 25-30 кг/м3 и пористость 97,8 об.%.
В качестве высокопористого войлочного носителя используют синтетический войлок на основе полиэтилентерефталатного волокна (синтепон), имеющий кажущуюся плотность 50-6 кг/м3 и пористость 95-99,6 об.%.
Существенное отличие заявляемой композиции от известной заключается в присутствии в ней в малом количестве эластичного полимерного носителя. Его особенностью является высокая открытая пористость, превышающая 95 об.%. Это определяет способность носителя поглощать и удерживать в таком большом количестве реакционную композицию, что его присутствие не оказывает никакого влияния на упруго-деформационные свойства получаемого из нее полимерного материала. Носитель используется для того, чтобы удержать на себе композицию с тем, чтобы перенести ее в пресс-форму. Реакция образования сетчатого полимера полиизоциануратной структуры завершается количественно непосредственно в замкнутой пресс-форме за короткий цикл горячего прессования.
Заявленная композиция позволяет промышленным способом за короткий цикл горячего прессования изготовить полимерные изделия необходимой конструкции, в которых по любому заданному направлению модуль упругости меняется плавно или резко в любом диапазоне от 3 до 2000 МПа. При этом материал сохраняет упругость, а не вязкоупругость при любом значении модуля в интервале температур от -50 до 120°С.
Использование заявленной композиции, содержащей высокопористый полимерный носитель, существенно сокращает технологический процесс получения конструкционных материалов на основе полиизоциануратов с произвольно регулируемым в пределах от 3 до 2000 МПа модулем упругости, устраняет хрупкость, присущую высокомодульным полиизоциануратам, и позволяет придать качественно новые характеристики полимерным конструкционным материалам. Достигнутая при использовании предложенной композиции простота технологического оформления производства делает реальным их практическое использование в различных областях промышленности, таких как обувная, шинная, радиопромышленность, приборостроение.
Композицию для получения полимерных материалов на основе полиизоциануратов с непрерывным и плавно меняющимся модулем упругости в диапазоне от 3 до 2000 МПа и перерабатываемых в изделия методом горячего прессования готовят следующим образом:
1) Низкомолекулярный полимер с концевыми гидроксильными группами растворяют в ацетоне, смешивают с 2,2-кратным мольным избытком ароматического диизоцианата в течение 4 часов при 56°С; добавляют катализатор отверждения, полученный предварительным смешением диметилбензиламина и эпоксидиановой смолы, и
перемешивают еще 1 час при 56°С. Получают так называемую "эластичную" композицию.
2) Низкомолекулярный полимер с концевыми гидроксильными группами растворяют в ацетоне, смешивают с избыточным по отношению к эквимолекулярному количеством ароматического диизоцианата в течение 4 часов при 56°С; добавляют катализатор отверждения, полученный предварительным смешением диметилбензиламина и эпоксидиановой смолы, и перемешивают еще 1 час при 56°С. Получают так называемую "жесткую" композицию.
3) Высокопористый носитель в виде заготовки необходимой формы помещают в вертикальную форму. Композиции помещают в дозаторы смесителя специально сконструированной установки, позволяющей смешивать и одновременно плавно регулировать относительное соотношение "эластичной" и "жесткой" в суммарной композиции, заливаемой в форму. В результате состав ее плавно меняется по высоте от "жесткой" с избыточным содержанием диизоцианата до "эластичной" с избыточным содержанием низкомолекулярного полимера. После выдержки в растворе в течение 5-10 мин "сырой" препрег высушивают при 60-70°С в течение 1-4 час, помещают в пресс-форму и прессуют при 150°С, удельном давлении 200-250 кг/см2 с выдержкой в течение 1-3 мин на 1 мм толщины изделия.
Конкретные составы заявляемых композиций и свойства получаемых материалов приведены в таблице. В примере 3 дана характеристика материала, полученного за пределами заявленного способа, из которого видно, что: при использовании носителя с пористостью 87,7 об.% на порядок возрастает эластический модуль упругости при сжатии.
Ход кривых релаксации напряжения для полученных материалов показывает, что при любых значениях модуля упругости во всем диапазоне механическое поведение по всем направлениям является упругим, характерным для полимерных стекол.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПОЛИИЗОЦИАНУРАТОВ ДЛЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ | 1992 |
|
RU2061708C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПОЛИИЗОЦИАНУРАТОВ ДЛЯ ТЕПЛО- И ТЕРМОСТОЙКИХ МАТЕРИАЛОВ | 1992 |
|
RU2061709C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛИМЕРНОГО МАТЕРИАЛА С ЗАДАННЫМ МОДУЛЕМ УПРУГОСТИ | 2003 |
|
RU2265628C2 |
СПОСОБ ПОВЫШЕНИЯ ВЯЗКОСТИ ПРИ РАЗРУШЕНИИ ПОЛИИЗОЦИАНУРАТ-СОДЕРЖАЩИХ ПРОДУКТОВ РЕАКЦИИ | 2016 |
|
RU2715566C2 |
УПРОЧНЯЮЩАЯ СИСТЕМА ДЛЯ УПРОЧНЕНИЯ ПОЛОСТИ КОНСТРУКЦИОННОГО ЭЛЕМЕНТА | 2007 |
|
RU2437795C2 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ | 2001 |
|
RU2220168C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТОВ НА ОСНОВЕ ХЛОРВИНИЛОВЫХ ПОЛИМЕРОВ И ПОЛИУРЕТАНОВ | 2002 |
|
RU2227147C2 |
ЖЕСТКИЕ ПЕНОПОЛИУРЕТАНЫ | 1997 |
|
RU2189379C2 |
СПОСОБ ПОЛУЧЕНИЯ УРЕТАН-ИЗОЦИАНУРАТОВ | 2014 |
|
RU2675359C2 |
ЭПОКСИДНАЯ КОМПОЗИЦИЯ | 2007 |
|
RU2345106C1 |
Изобретение относится к области получения полимерных конструкционных материалов из термореактивных композиций на основе полиизоциануратов. Заявляется композиция для получения полимерных конструкционных материалов, содержащая 100 мас.ч. низкомолекулярного гибкоцепного полимера с концевыми гидроксильными группами, 22,5-400 мас.ч. ароматического диизоцианата, 0,08-2,0 мас.ч. диметилбензиламина, 0,8-20 мас.ч. эпоксидиановой смолы, 55-30 мас.ч. ацетона, 2,0-22,5 мас.ч. высокопористого полимерного наполнителя, причем в качестве указанного полимерного наполнителя используется эластичный пенополиуретан или синтетический войлочный материал (синтепон). Из указанной композиции промышленным способом, за короткий цикл горячего прессования, изготавливаются полимерные изделия с градиентным модулем упругости (в любом заданном направлении) от 3 до 2000 МПа, причем материал сохраняет упругие свойства при любом значении модуля в интервале температур от -50 до 120°С и может быть использован в обувной и шинной промышлености, приборостроении и радиопромышленности. 2 з.п.ф-лы, 1 табл.
низкомолекулярный гибкоцепной полимер с концевыми гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-20
ацетон 55-30
высокопористый полимерный носитель 2,0-22,5
низкомолекулярный гибкоцепной полимер с концевыми гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-20
ацетон 55-40
эластичный пенополиуретан 3,5-10
низкомолекулярный гибкоцепной полимер c концевыми
гидроксильными группами 100
ароматический диизоцианат 22,5-400
диметилбензиламин 0,08-2,0
эпоксидиановая смола 0,8-10
ацетон 55-30
синтетический войлочный материал 2,0-22,5
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПОЛИИЗОЦИАНУРАТОВ ДЛЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ | 1992 |
|
RU2061708C1 |
Изоцианатная композиция для тепло- и термостойких полиуретанов и способ ее получения | 1987 |
|
SU1735330A1 |
Композиция для получения полиизоциануратов | 1987 |
|
SU1558941A1 |
US 4397983 A, 09.08.1983. |
Авторы
Даты
2005-05-27—Публикация
2003-06-25—Подача