СПОСОБ ПЛАВКИ СТРУЖКИ Российский патент 2005 года по МПК C22B7/00 

Описание патента на изобретение RU2252973C1

Предлагаемый способ относится к области переработки отходов цветных металлов и сплавов и может быть использован при плавке стружки на предприятиях вторичной переработки металлов и машиностроительных предприятиях, имеющих отходы собственного производства.

Известен способ переплава (см. В.Я.Конюх “Газоокислительная плавка металла”, Киев, “Наукова думка”, 1979, с.87), при котором стружка равномерно и непрерывно загружается поверх слоя древесного угля, над которым поддерживается восстановительная атмосфера за счет сжигания топлива с недостатком воздуха.

Недостатком известного способа является то, что из-за значительного количества мелких фракций подача стружки в печь поверх слоя древесного угля навстречу потоку отходящих газов приводит к значительному уносу и окислению металла.

Кроме того, шлак, образующийся на поверхности металлической ванны, обладает высокой вязкостью и большим поверхностным натяжением, что не дает возможности стружке, имеющей малую насыпную плотность проникнуть в расплав. Таким образом, процесс плавления стружки протекает в слое древесного угля над поверхностью шлаковой ванны, и капли расплавленного металла проходят через слой древесного угля и шлака, частично осаждаются в них в виде "корольков", что приводит к увеличению потерь металла.

Из известных наиболее близким по технической сущности является способ плавки металлической стружки непосредственно в шлаковой ванне (см. В.Я.Конюх “Газоокислительная плавка металлам, Киев, “Наукова думка”, 1979, с.93), согласно которому загрузка стружки в печь осуществляется через стальную трубу непосредственно в шлаковую ванну, при этом значительно уменьшается унос шихты из рабочего пространства отходящими газами. Однако при погружении в шлаковый расплав частичек стружки, температура плавления которых выше температуры застывания шлака, на них намерзает корка шлака в результате интенсивного поглощения тепла холодной стружкой. Тепло, выделяющееся при кристаллизации шлака, полностью идет на нагрев стружки. Процесс намерзания прекращается при наступлении теплового равновесия, когда достигается равенство тепловых потоков на внутренней и наружной поверхностях намерзшего слоя. С этого момента начинается плавление намерзшего шлака, и затем последующие периоды: прогрев стружки от температуры плавления шлака до температуры плавления металла и непосредственно плавление самой стружки. Все эти процессы приводят к увеличению времени переплава, т.е. снижают производительность. Кроме того, мелкие капли расплава, проходя через слой шлака, осаждаются в виде “корольков”, что приводит к увеличению потерь металла.

Техническим результатом предлагаемого способа является повышение производительности процесса переплава стружки и снижение потерь металла.

Сущность предлагаемого способа заключается в том, что до начала загрузки стружки на подину печи предварительно наплавляют металлический расплав объемом 0,2-0,25 от объема плавильного пространства печи, стружку загружают в плавильное пространство печи через металлическую трубу с площадью внутреннего сечения, равной 0,03-0,05 площади поверхности ванны, при помощи металлического толкателя непосредственно в металлический расплав под слой шлака, покрытого сверху углеродсодержащим материалом, и осуществляют плавление стружки в расплаве.

Такое сочетание новых признаков с известными позволяет повысить производительность процесса переплава стружки по сравнению с прототипом, так как увеличивается скорость ее расплавления, и уменьшить потери металла, так как в шлаке осаждается меньше "корольков".

Способ осуществляется следующим образом. Вначале на подине плавильного агрегата создается "болото" из металлического расплава объемом 0,2-0,25 от объема плавильного пространства печи, которое сверху засыпается слоем углеродсодержащего материала, над которым поддерживается восстановительная атмосфера за счет недостатка воздуха. Затем по металлической трубе, нижний конец которой погружен в металлический расплав ниже уровня шлака с помощью металлического толкателя, производится загрузка стружки непосредственно в металлический расплав под слой шлака.

Наведение на подине плавильного агрегата "болота" из металлического расплава объемом 0,2-0,25 от объема плавильного пространства печи и применение в качестве загрузочного устройства металлического толкателя и трубы с площадью внутреннего сечения, равной 0,03-0,05 площади поверхности ванны, обеспечивает максимально возможную производительность плавильного агрегата и минимальные потери металла при переплаве стружки.

Снижение объема “болота” ниже нижнего предела приводит к захолаживанию расплава, так как плавление стружки идет в основном за счет теплопередачи от расплава к твердой стружке, а превышение выше верхнего неоправданно из-за соображений производительности и является экономически нецелесообразным, так как уменьшается объем рабочего пространства печи.

Уменьшение площади внутреннего сечения загрузочной трубы меньше нижнего предела приводит к снижению производительности процесса, так как при загрузке разовой дозы стружки, необходимой для обеспечения максимальной производительности процесса переплава, столб стружки в трубе настолько велик, что происходит “закупоривание” и стружку невозможно протолкнуть в металлический расплав с помощью толкателя. Увеличение площади внутреннего сечения загрузочной трубы выше верхнего предела приводит к увеличению площади контакта металлического расплава в загрузочном пространстве с атмосферой и, как следствие этого, повышенному угару металла.

Пример осуществления способа.

Плавки проводили в индукционной канальной печи типа ИПРП - 0,25 следующим образом. В печи наплавляли “болото” объемом 0,15-0,3 от объема плавильного пространства печи, на поверхность которого загружали древесный уголь толщиной слоя 15-25 мм. Загрузочно-раздаточное пространство печи закрывали металлическим сводом, в котором закреплялась металлическая труба, с площадью внутреннего сечения, равной 0,02-0,05 площади поверхности ванны печи, через которую дозированными порциями производили загрузку дробленой латунной стружки. Загрузочную трубу устанавливали таким образом, чтобы ее нижний конец погружался в металлический расплав на 10-15 мм ниже поверхности шлаковой ванны. С помощью металлического толкателя с наружным диаметром на 3-5 мм меньше чем внутренний диаметр загрузочной трубы порции стружки проталкивались непосредственно в расплав, где и происходило плавление стружки. Длительность каждой плавки составляла 60 минут, и, плавку вели таким образом, чтобы скорость загрузки латунной стружки в печь обеспечивала поддерживание температуры расплава в пределах 940-970°С, так как при увеличении скорости загрузки стружки, когда температура расплава падала ниже 940°С, наблюдалось захолаживание расплава и снижалась скорость плавления стружки, а при уменьшении скорости загрузки, когда температура расплава превышала 970°С, наблюдался повышенный угар цинка. Замер температуры производили термопарой ТПР - 571.

Результаты проведенных плавок представлены в таблице.

Как видно из таблицы, применение способа обеспечивает максимально возможную производительность плавильного агрегата и минимальные потери металла при переплаве стружки.

Предлагаемый способ всесторонне исследован и принят к осуществлению на ОАО “Пензенский арматурный завод”

Условия плавкиКоличество переплавленной стружки, кгВремя плавки, минОбъем “болота” по отношению к объему плавильного пространства печиПлощадь внутреннего сечения трубы по отношению к площади поверхности ванны печиУгар металла, %Потери металла в виде “корольков” в %Извлечение металла (от веса металла в шихте,) %Производительность процесса, кг/часПоказатели техпроцессаИзвестный способ80600,250,045,33,890,980СтабильныйПредлагаемый способ80600,250,025,30,893,980Происходит постоянное “закупориванием трубы стружкой115600,250,034,90,694,5115Стабильный120600,250,044,80,594,7120Стабильный120600,250,054,90,594,6120Стабильный120600,250,065,40,694,0120Стабильный, но увеличен угар90600,150,044,90,594.690В начальный период плавки расплав “захолаживается”118600,20,044,90,594,6118Стабильный120600,250,044,80,594,7120Стабильный120600,30,044,80,594,7120Стабильный, но уменьшен объем свободного плавильного пространства

Похожие патенты RU2252973C1

название год авторы номер документа
СПОСОБ НЕПРЕРЫВНОЙ ПЕРЕРАБОТКИ СОДЕРЖАЩИХ ОКСИДЫ ЖЕЛЕЗА МАТЕРИАЛОВ И АГРЕГАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Голубев Анатолий Анатольевич
  • Гудим Юрий Александрович
RU2344179C2
СПОСОБ ОБРАБОТКИ РАДИОАКТИВНЫХ МЕТАЛЛИЧЕСКИХ ОТХОДОВ И ПЕЧЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Васильев М.Г.
  • Бахвалов С.Г.
  • Пуликова З.В.
  • Егоров Н.Н.
  • Лапшин Б.М.
  • Васильев В.М.
RU2148865C1
Способ получения ферромолибдена металлотермическим процессом 1984
  • Байрамов Бранислав Иванович
  • Огуй Никита Кондратьевич
  • Зайко Виктор Петрович
  • Железнов Дмитрий Федорович
  • Задворнов Владимир Алексеевич
  • Попов Валентин Петрович
  • Григорчук Владимир Петрович
  • Серый Владимир Федорович
  • Кузнецова Надежда Ильинична
  • Демидов Юрий Яковлевич
SU1235964A1
СПОСОБ ПЛАВЛЕНИЯ ЗОЛОШЛАКОВ МУСОРОСЖИГАТЕЛЬНЫХ ЗАВОДОВ 2021
  • Аньшаков Анатолий Степанович
  • Фалеев Валентин Александрович
  • Домаров Павел Вадимович
RU2775593C1
СПОСОБ ВЫПЛАВКИ ФЕРРОНИКЕЛЯ ИЗ ОКИСЛЕННЫХ НИКЕЛЕВЫХ РУД И ПРОДУКТОВ ИХ ОБОГАЩЕНИЯ И АГРЕГАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Голубев Анатолий Анатольевич
  • Гудим Юрий Александрович
RU2336355C2
СПОСОБ ПЕРЕРАБОТКИ МЕТАЛЛИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ И АГРЕГАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Голубев Анатолий Анатольевич
  • Гудим Юрий Александрович
RU2345141C1
Печь для непрерывной плавки сульфидных материалов в жидкой ванне 1981
  • Грицай Владимир Петрович
  • Строителев Иван Александрович
  • Голиков Сергей Николаевич
  • Ванюков Андрей Владимирович
  • Быстров Валентин Петрович
  • Иванов Владимир Васильевич
SU998823A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ ОКИСЛЕННЫХ РУДНЫХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ ЖЕЛЕЗО, НИКЕЛЬ И КОБАЛЬТ 2011
  • Быстров Валентин Петрович
  • Комков Алексей Александрович
  • Федоров Александр Николаевич
  • Дитятовский Леонид Исаакович
RU2463368C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ СВИНЦОВОГО СЫРЬЯ 2005
  • Быстров Валентин Петрович
  • Дитятовский Леонид Исаакович
  • Комков Алексей Александрович
  • Федоров Александр Николаевич
RU2283359C1
Шахтно-отражательная печь для переплава металла 2023
  • Трусов Владимир Александрович
RU2799640C1

Реферат патента 2005 года СПОСОБ ПЛАВКИ СТРУЖКИ

Изобретение относится к области металлургии. Способ плавки стружки включает загрузку стружки в плавильное пространство печи через металлическую трубу и ее плавление. До начала загрузки стружки на подину печи предварительно наплавляют металлический расплав объемом 0,2-0,25 от объема плавильного пространства печи. Стружку загружают в плавильное пространство печи через металлическую трубу с площадью внутреннего сечения, равной 0,03-0,05 площади поверхности ванны, при помощи металлического толкателя непосредственно в металлический расплав под слой шлака, покрытого сверху углеродсодержащим материалом. Осуществляют плавление стружки в расплаве. При использовании изобретения повышается производительность процесса и снижаются потери металла. 1 табл.

Формула изобретения RU 2 252 973 C1

Способ плавки стружки, включающий загрузку стружки в плавильное пространство печи через металлическую трубу и ее плавление, отличающийся тем, что до начала загрузки стружки на подину печи предварительно наплавляют металлический расплав объемом 0,2-0,25 от объема плавильного пространства печи, стружку загружают в плавильное пространство печи через металлическую трубу с площадью внутреннего сечения, равной 0,03-0,05 площади поверхности ванны, при помощи металлического толкателя непосредственно в металлический расплав под слой шлака, покрытого сверху углеродсодержащим материалом, и осуществляют плавление стружки в расплаве.

Документы, цитированные в отчете о поиске Патент 2005 года RU2252973C1

КОНЮХ В.Я
Газоокислительная плавка металла
Киев: Наукова думка, 1979, с.93
СПОСОБ ПЕРЕПЛАВА МЕЛКИХ ОТХОДОВ И СТРУЖКИ ЦВЕТНЫХ СПЛАВОВ 1999
  • Шаршин В.Н.
  • Кечин В.А.
  • Скитович С.В.
  • Масленников А.В.
  • Трихаев С.В.
  • Юдин А.Ф.
RU2156816C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ И СТРУЖКИ ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ 1999
  • Скитович С.В.
  • Шаршин В.Н.
  • Кечин В.А.
  • Юдин А.Ф.
  • Масленников А.В.
RU2156815C1
Способ переплава металлических отходов 1977
  • Алпатьев Николай Алексеевич
  • Тимофеев Александр Николаевич
  • Севрюков Валерий Сергеевич
  • Гаврилов Александр Лукич
SU661032A1
Способ переработки отходов сплавов цветных металлов 1983
  • Косинцев Виктор Андреевич
  • Потысьев Владимир Михайлович
SU1125274A1
ГИДРОПРЕСС ДЛЯ СОЕДИНЕНИЯ ЧАСТЕЙ КАМЕРЫ ВЫСОКОГО ДАВЛЕНИЯ 2003
  • Куршин А.П.
  • Чистов Ю.И.
RU2250826C1

RU 2 252 973 C1

Авторы

Голотенков О.Н.

Дворник С.И.

Казанцев С.И.

Даты

2005-05-27Публикация

2004-03-01Подача