ПРОИЗВОДНЫЕ ГЛИКОЗИДОВ ИНДОЛО[2,3-А]ПИРРОЛО[3,4-С]КАРБАЗОЛ-5,7-ДИОНОВ, ОБЛАДАЮЩИЕ ЦИТОТОКСИЧЕСКОЙ И ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ Российский патент 2005 года по МПК C07H19/23 A61K31/7056 A61P35/00 

Описание патента на изобретение RU2255089C1

Изобретение относится к области химии, медицины и биологии и касается гликозидов производных индолокарбазола и, в частности, L-арабинопиранозидов индолокарбазолов, проявляющих цитотоксическую и противоопухолевую активность.

В ряду гликозидов индолокарбазолов с противоопухолевыми свойствами известны, например, противоопухолевый антибиотик ребеккамицин (патенты США 4487925 и 4552842), имеющий природное происхождение, его модифицированный водорастворимый аналог (патент США 4785085), противоопухолевые соединения, представляющие собой производные индолопирролокарбазолов с моносахаридными остатками (заявка РСТ 95/30682 А1). Описаны гликозидные производные индолопирролокарбазолов (заявка РСТ 98/07433 А1), содержащие в качестве углевода остатки аминосахаров. Известны также производные индолопирролокарбазолов, содержащие в качестве углеводного остатка дисахарид и проявляющие противоопухолевые свойства (заявка РСТ 96/04293 А1).

Известные способы введения гликозидного остатка в молекулу индолокарбазола можно условно разделить на две группы. Первую группу составляют микробиологические методы, описанные в патенте США 5468849; 5668271, в Европейском патенте 0602597 А2 и в заявке РСТ 96/04293 А1. Однако эти способы позволяют ввести лишь немногие сахара, в основном - глюкозу. К этой же группе можно отнести методы химической модификации полученного микробиологическим способом ребеккамицина (патент США 4785085). Вторую группу составляют методы химического гликозилирования с использованием реакции Мицунобу (патенты США 5804564 и 5922860, заявка РСТ 95/30682 А1) и метод солей - ртутных, серебряных и др. (патенты США 5668271 и 5591842 и заявка РСТ 96/04293 А1). Эти методы являются достаточно трудоемкими, поскольку требуют введения защитных групп в индолокарбазол и последующего их удаления, а также многостадийного синтеза производного углевода, применяемого в реакции гликозилирования.

Задачей настоящего изобретения является получение новых соединений аналогичной структуры, проявляющих значительную эффективность против различного рода опухолей.

Поставленная задача реализуется предлагаемыми новыми производными гликозидов индоло[2,3-а]пирроло[3,4-с]карбазол-5,7-дионов общей формулы (I)

где

R1 означает остаток моно- или дисахарида в пиранозной форме, предпочтительно, D-Rib, L-Ara, D-Xyl, D-Gal, D-Glc, D-Lac;

R2 означает атом водорода, метильную группу или остаток моно- или дисахарида;

R3 означает водород, гидроксильную группу, аминогруппу или формамидо-группу;

X1 и X2 означают, каждый независимо друг от друга, атом водорода или атом брома,

при условии, что они не могут означать одновременно атом водорода, а также при условии, что если R1 означает дисахаридный остаток, R2 отличен от водорода.

Заявляемые соединения могут быть получены известным способом (Мельник С.Я., Бахмедова А.А. и др. Биоорган. химия, 22, 458-467, 1996; Мельник С.Я., Бахмедова А.А. и др. Биоорган. химия, 22, 832-837, 1996; Бахмедова А.А., Гараева Л.Д. и др. Биоорган. химия, 23, 667-674, 1997), а также альтернативным способом путем взаимодействия гликозида индол-3-илуксусной кислоты с индолом или N-метилиндолом в дихлорэтане при нагревании. Для получения гликозидов индол-3-илуксусной кислоты в качестве исходных соединений используют пер-O-ацетилированные гликозиды индола, получаемые с помощью “индолин-индольного метода” (Preobrazhenskaya M.N., Korbukh I.A. in: "Chemistry Nucleosides and Nucleotides". Ed. L.B. Townsend, Plenum Press, NY, 1993, p.1-105). Полученные таким образом N-гликозиды индола обрабатывают последовательно оксалилхлоридом и водой с образованием не описанных ранее гликозидов индол-3-илглиоксиловой кислоты в виде пер-O-ацетатов. Избирательное восстановление β -карбонильной группы в остатке глиоксиловой кислоты приводит к не описанньм ранее гликозидам индол-3-илуксусной кислоты в виде пер-O-ацетатов.

Предложенный заявителями метод отличается от описанных ранее тем, что обеспечивает заданную конфигурацию гликозидной связи, позволяет использовать широкий набор углеводов, включая дисахариды, не требует предварительного синтеза производного углевода, пригодного для гликозилирования, и защиты агликона и, таким образом, позволяет получать ряды соединений, отличающихся не только природой углеводного остатка, но и заместителями в гетероциклическом агликоне и представляющих интерес для биологии и медицины.

Синтезированные гликозиды охарактеризованы данными тонкослойной хроматографии (ТСХ), 1Н-ЯМР - и масс-спектров высокого разрешения. Спектры 1H-ЯМР синтезированных соединений записаны на приборе Bruker WH-360 (Германия), внутренний стандарт - тетраметилсилан; для отнесения сигналов в спектрах и уточнения констант спин-спинового взаимодействия использовали метод двойного резонанса при разных мощностях подавления спин-спиновой связи; при описании формы сигналов приведены следующие сокращения: с - синглет, д - дублет, т - триплет, м - мультиплет, дд - дублет дублетов, ддд - дублет дублета дублетов, уш. с - уширенный синглет, значения констант спин-спинового взаимодействия (J) приведены в Герцах, для ароматических протонов 3J=8.2-8.3. Масс-спектры регистрировали на масс-спектрометре Finnigan MAT 8430 (Германия) с системой обработки данных SS-300 при ускоряющем напряжении 3 кВ, энергии ионизирующих электронов 70 эВ, температуре источника ионов 250° С, температуре испарения образца 170-250° С, применяя систему прямого ввода вещества в область ионизации; приведены значения m/z. ТСХ проводили на силуфоле UV254, препаративную хроматографию - на пластинах (20× 20 см) с силикагелем LSL254, 5-40 мкм (Chemapol, ЧР) при толщине слоя 1 мм.

Краткое описание рисунков

Фиг.1. Кинетика развития меланомы В 16 у животных, получавших соединение (Iа) в ряде доз, в сравнении с контролем (мыши BDF1). По оси абсцисс - время после перевивки опухоли в сутках, по оси ординат - масса опухоли в г.

1-70 мг/кг, однократно, в/б; 2 - 40 мг/кг, пятикратно, в/б; 3 - 30 мг/кг пятикратно, в/б; 4 - 20 мг/кг, пятикратно, в/б.

Фиг.2. Изменение показателей ростингибирующего эффекта соединения (Iа) во времени на модели меланомы В 16 (мыши BDF1).

А - зависимость показателя торможения роста опухоли (ТРО, %) от времени воздействия препарата. Б - зависимость кинетического критерия активности от времени после воздействия препарата.

1 - 70 мг/кг, однократно, в/б; 2 - 40 мг/кг, пятикратно, в/б; 3 - 30 мг/кг пятикратно, в/б; 4 - 20 мг/кг, пятикратно, в/б.

Примеры осуществления изобретения

Пример 1. Синтез 9-бром-13-метил-12-(α-L-арабинопиранозил)индоло-[2,3-а]пирроло-[3,4-с]карбазол-5,7-иона (Ia)

а) К раствору 1,2 ммоль 1-(2,3,4-три-O-ацетил-α-L-арабинопиранозил)-5-броминдола (ХФЖ, 13(6), 47, 1979)) в 10 мл хлористого метилена при перемешивании и охлаждении до -5-0° С прибавляли раствор 1,8 ммоль оксалилхлорида в 6 мл хлористого метилена. Реакционную смесь выдерживали 18 ч при 20-22° С, затем упаривали досуха. К остатку, растворенному в 12 мл дихлорэтана, при 0° С прибавляли 1,2 ммоль 1-метилиндол-3-илуксусной кислоты и 2,4 ммоль триэтиламина. Реакционную смесь нагревали при кипении в течение 6 ч. Растворитель упаривали в вакууме, остаток очищали препаративной ТСХ в системе бензол - ацетон, 4:1. Получали 3-(1-метилиндол-3-ил)-4-[1-(2,3,4-три-O-ацетил-α -L-арабинопиранозил)-5-броминдол-3-ил]-фуран-2,5-дион, выход 61%. Масс-спектр (m/z): 678.0917 (М+), 420, 422, 376, 378, 348, 350, 269, 268, 259, 199, 157, 139, 97, 43. 1H-ЯМР (CDCl3): 7.96 (с, 1Н), 7.84 (с, 1H), 7.42 (д, 1Н), 7.32 (д, 1H), 7.20-7.05 (м, 2Н), 6.85-6.70 (м, ЗН), 3.92 (с, 3Н, СН3), 5.43 (д, 1H, H1', J1',2' 8.9), 5.70 (дд, 1H, H2', J2',3' 10.2), 5.27 (дд, 1H, Н3', J3',4' 3.4), 5.47 (ддд, 1H, Н4', J4', 5а' 2.1, J4',5б'0), 4.20 (дд, 1H, Н5'а, Jгем. 13.6), 3.98 (д, 1H, Н5'б), 2.26 (с, 3Н, Ас), 2.03 (с, 3Н, Ас), 1.81 (с, 3Н, Ас).

б) Раствор 0,41 ммоль 3-(1-метилиндол-3-ил)-4-[1-(2,3,4-три-O-ацетил-α-L-арабинопиранозил)-5-броминдол-3-ил]фуран-2,5-диона и 20 мг иода в 220 мл бензола помещали в кварцевую пробирку и при барботировании воздуха облучали под Hg-лампой в течение 6 ч (контроль по ТСХ в системе бензол-ацетон, 4:1). Растворитель упаривали в вакууме, остаток хроматографировали в системе бензол-ацетон, 4:1. Получали 9-бром-13-метил-12-(2,3,4-три-O-ацетил-α-L-арабинопиранозил)индоло-[2,3-а]фурано[3,4-с]карбазол-5,7-дион, выход 66%. Масс-спектр (m/z): 676.0774 (М+), 417, 419, 259, 199, 157, 139, 97, 69, 43. 1Н-ЯМР(СDСl3): 9.12 (д, 1Н), 9.00 (дд, 1Н), 7.91 (д, 1Н), 7.73 (т, 1Н), 7.68 (дд, 1Н), 7.63 (д, 1Н), 7.40 (ддд, 1Н), 4.24 (с, 3Н, СН3), 5.88 (д, 1Н, H1', J1',2' 9.3), 5.56 (дд, 1H, H2', J2',3' 10.3), 5.08 (дд, 1H, Н3', J3',4' 3.2), 5.47 (дд, 1H, Н4', J4',5a' 2.0, J 4',5б'0.7), 4.48 (дд, 1H, Н5'а, Jгем. 13.8), 4.07 (д, 1H, Н5'б), 2.35 (с, 3Н, Ac), 1.87 (с, 3Н, Ac), 0.87 (с, 3Н, Ас).

в) Смесь, состоящую из 0,33 ммоль 9-бром-13-метил-12-(2,3,4-три-О-ацетил-α-L-арабинопиранозил)индоло-[2,3-а]фурано[3,4-с]карбазол-5,7-диона в 5 мл DMF и 5 мл 33%-ного водного аммиака, нагревали 4 ч при 140° С в автоклаве, оставляли на 18 ч при 20-22° С. Растворитель упаривали в вакууме. Остаток хроматографировали в системе хлороформ-метанол 4:1. Получали 9-бром-13-метил-12-(α-L-арабинопиранозил)индоло-[2,3-а]пирроло[3,4-с]карбазол-5,7-дион (1а), выход 62%. Масс-спектр (m/z): 549.0476 (М+), 417, 419, 402, 04, 338, 267. 1Н-ЯМР (DMSO-d6): 9.27 (д, 1H), 9.09 (дд, 1H), 8.02 (д, 1H), 7.77 (дд, 1H), 7.72-7.65 (м, 2Н), 7.44 (т, 1Н), 4.20 (с, 3Н, СН3), 5.62 (д, 1H, H1', J1',2' 8.7), 4.32 (дд, 1H, H2', J2',3'10.0), 4.15-3.80 (м, 4Н, Н3', Н4', НН5'), 5.04, 4.76 (2-ОН).

Пример 2. Синтез 6-амино-9-бром-13-метил-12-(1-α-L-арабинопиранозил)индоло-[2.3-а]пирроло[3,4-с]карбазол-5,7-диона (Ib, R3=NH2)

Смесь, состоящую из 0,43 ммоль 9-бром-13-метил-12-(2,3,4-три-O-ацетил-α -L-арабинопиранозил)индоло-[2,3-а]фурано[3,4-с]карбазол-5,7-диона и 5 мл гидразин-гидрата, нагревали 6 ч при 50° С. Реакционную смесь упаривали в вакууме, остаток затирали с водой, осадок желтого цвета отделяли, сушили над Р2O5. Получали соединение (Ib), выход 41%. Масс-спектр (m/z): 564, 566 (М+), 434, 432, 417, 419, 338, 339, 268, 267. 1Н-ЯМР (DMSO-d6): 9.27 (д,1Н), 9.09 (дд, 1H), 8.0 (д, 1Н), 7.40-7-80 (м, 3Н), 7.42 (т, 1H), 4.93 (уш. с, 2Н, NH2), 4.20 (с, 3Н, СН3), 5.60 (д, 1H, H1', J1',2' 8.6), 3.90-4.15 (м, 3Н, Н2', НН5'), 3.53 (м, 1Н, Н3'), 3,85 (уш. с, 1Н, Н4'), 5.04, 4.76 (2-ОН), 4.37 (д, 1Н, 1-ОН, Jон,н 6.0).

Пример 3. Синтез 6-гидрокси-9-бром-13-метил-12-(1-α-L-арабинопиранозил)индоло-[2,3-а]пирроло[3,4-с]карбазол-5,7-диона (Ic, R3=OH)

Смесь, состоящую из 0,15 ммоль 9-бром-13-метил-12-(2,3,4-три-O-ацетил-α-L-арабинопиранозил)индоло-[2,3-а]фурано[3,4-с]карбазол-5,7-диона, 13,9 ммоль хлоргидрата гидроксиламина, 13,9 ммоль триэтиламина и 2 мл DMF, перемешивали 1 ч при 70° С. Реакционную смесь разбавляли водой, выпавший осадок оранжевого цвета фильтровали, хроматографировали на силикагеле в системе хлороформ-метанол, 5:1. Получали соединение (I с), выход 24%. Масс-спектр (m/z): - (М+), 550, 433, 432, 419, 418, 339, 338, 268, 267. 1Н-ЯМР (DMSO-d6): 10.52 (уш. с, 1Н, N-OH), 9.24 (д, 1Н), 9.06 (д, 1H), 8.01 (дд, 1Н). 7.60-7.80 (м, 3Н), 7.43 (т, 1Н), 4.19 (с, 3Н, СН3), 5.60 (д, 1H, Н1', J1',2' 8.3), 3.80-4.25 (м, 5Н, Н2', Н3', Н4', НН5'), 5.01, 4.73, 4.37 (3 уш. д, 3Н, 3-ОН).

Пример 4. Синтез 6-формамидо-9-бром-13-метил-12-(1-α-L-арабинопиранозил)индоло-[2,3-а]пирроло[3,4-с]карбазол-5,7-диона (Id)

Смесь, состоящую из 0,12 ммоль 9-бром-13-метил-12-(2,3,4-три-O-ацетил-α-L-арабинопиранозил)индоло-[2,3-а]фурано[3,4-с]карбазол-5,7-диона, 1 мл DMF и 0,017 мл концентрированной соляной кислоты, нагревали 12 ч при 50° С. Реакционную смесь упаривали в вакууме, остаток хроматографировали на силикагеле в системе хлороформ-метанол, 5:1. Получали соединение (Id), выход 15%. Масс-спектр (m/z): - (М+), 566, 564,460, 434, 432,419, 417, 339, 338. 1H-ЯМР (DMSO-d6): 10.82 (с, 1H, NH), 8.44 (с, 1H, СНО), 9.21 (д, 1Н), 9.04 (д, 1H), 8.04 (д, 1H), 7.80 (д, 1H), 7.73 (т, 1H), 7.71 (т, 1H), 7.47 (т, 1H), 4.23 (с, 3Н, СН3), 5.64 (д, 1H, Н1', J1',2' 8.8), 3.96-4.21 (м, 5Н, Н2', Н3', Н4', НН5'), 5.1 (д, 1H, 1-ОН), 4.83 (д, 1H, 1-ОН, Jон,н5.8), 4.41 (д,1Н, 1-ОН, Jон,н6.0).

Пример 5. Результаты изучения цитотоксической активности in vitro гликозидов индолокарбазолов

Цитотоксические свойства синтезированных гликозидов изучали in vitro на культурах клеток меланомы линии MS (меланома Симпсона), Соlо38 и рака яичника человека линии CaOv. Цитотоксический эффект оценивали с помощью МТТ анализа (Microculture Tetrazolium Assay) в модификации Alley, включенной в Программу скрининга противоопухолевых веществ Национального института рака США. Принцип метода основан на превращении МТТ (нетоксичная желтая соль тетразолия) дегидрогеназами живых клеток в кристаллы голубого формазана, количество которого оценивается спектрофотометрически. Образовавшиеся кристаллы формазана растворяли DMSO и измеряли парциальное поглощение на сканирующем спектрофотометре (Titertec Multiskan MCC/340) при λ =540 нм. Клеточную суспензию помещали в 96-луночные планшеты, к клеткам в фазе экспоненциального роста добавляли исследуемые вещества, а затем инкубировали в течение 72 часов. Время инкубации было достаточным для реализации метаболических эффектов исследуемых веществ, что выражалось в гибели клеток. Выжившую часть клеток определяли в процентах по соотношению величины парциального поглощения в опытных образцах и контроле (клетки в среде роста без препарата). Полученные результаты приведены в таблице 1.

Характеристика используемых моделей: культуры клеток меланомы человека линии MS и Соlо38 (время удвоения 36 часов) и рака яичника человека линии CaOv (время удвоения 48 часов) выращивали в виде монослоя в среде роста RPMI-1640 с добавлением 10% FBS, 2 мМ глютамина, 40 мкг/мл гентамицина в атмосфере 5% СО3 и 95% воздуха, при 37° С.

Из приведенных данных следует, что у всех предлагаемых соединений показатель цитотоксичности IС5010-5 соответствует критерию отбора для изучения противоопухолевой активности in vivo.

Противоопухолевую активность гликозидов изучали на мышах колонии SK, мышах-гибридах первого поколения BDF1 (C57B1/DBA2), весом 18-20 г, разведения питомника “Столбовая”. Экспериментальными моделями служили лейкозы L1210 и Р388 (мыши BDF1), опухоль Эрлиха (колония SHK), перевиваемые в асцитной форме внутрибрюшино (в/б) 5× 106 опухолевых клеток, а также солидная опухоль меланома В 16, перевиваемая подкожно измельченными фрагментами опухолевой ткани, согласно стандартным методикам (Экспериментальная оценка противоопухолевых препаратов в СССР и США // Ред. Софьина З.П., Сыркин А.Б., Goldin F., Klein I. // М.: Медицина, 1980). Препарат вводили в виде водно-спиртового раствора (10% этанол). Концентрация вводимого раствора препарата составляла 1 мг/мл. Токсичность препарата исследовали в остром опыте при однократном введении внутрибрюшинно в ряде доз интактным мышам колонии SHK. Срок наблюдения за животными составил 1 месяц. Срединную летальную дозу (LD5o) рассчитывали по методу Кербера. (Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Рига: Изд-во АН ЛатССР, 1952). Противоопухолевую активность препарата испытывали на животных-опухоленосителях при внутрибрюшинном введении в широком диапазоне доз при различных схемах применения - однократно либо многократно на протяжении 4, 5 или 6 суток ежедневно, начиная со следующих суток после перевивки опухоли. Каждую дозу препарата вводили 6 мышам (10 животных в контроле) при двух-, трехкратной повторяемости опытов. Критериями противоопухолевой активности служили: увеличение средней продолжительности жизни леченных животных (τ оп) по сравнению с контрольными (τ к), выраженное в процентах:

.

Торможение роста опухоли (ТРО) у леченных животных (Роп) по сравнению с контрольными (Рк), выраженное в процентах:

Кинетический критерий ростингибирующей активности , позволяющий сопоставить относительные скорости роста опухоли у леченных (ϕ оп) и контрольных (ϕ к) животных:

Пример 6. Противоопухолевая активность соединения формулы (Iа) на модели лейкоза L1210 (мыши BDF1)

Препарат вводили, начиная со следующих суток после перевивки опухоли. Результаты испытания препарата в широком диапазоне суточных доз при однократном и многократном применении представлены в таблице 2.

Как видно из приведенных данных, препарат обладает определенным антилейкемическим эффектом и в зависимости от примененной дозы приводит к увеличению сроков жизни животных на 12-25% по сравнению с контролем. Наибольшее увеличение продолжительности жизни животных наблюдается при применении препарата однократно в дозе 80 мг/кг (τ 25%) либо шестикратно по 20 мг/кг в сутки (τ 20%)

Пример 7. Противоопухолевая активность соединения формулы (Iа) на модели асцитной опухоли Эрлиха (мыши колонии SHK)

Введение препарата начинали со следующих суток после перевивки опухоли. Эффект оценивали на 12 сутки после перевивки опухоли. Результаты приведены в таблице 3.

Как следует из приведенных данных, соединение (Iа) проявляет исключительно высокую противоопухолевую активность, полностью подавляя развитие данной опухоли при применении во всех изученных дозах, включая низкую дозу 10 мг/кг в сутки, введенную шестикратно. Ревизия брюшной полости леченных животных на 12 сутки после перевивки опухоли выявила отсутствие у них асцитической жидкости при стандартном развитии опухоли у контрольных животных, имевших на указанный срок в среднем около 9 мл асцита в брюшной полости. Терапевтический индекс (ТИ100) соединения (Iа), рассчитанный как соотношение МПД (максимально переносимой дозы) к ЕД100 (доза, ингибирующая рост опухоли на 100%), составил для этой модели величину, равную 8.

Пример 8. Противоопухолевая активность соединения (Iа) на модели меланомы В16

Кинетика развития меланомы В16 у мышей, получавших различные дозы препарата (однократно 70 мг/кг либо пятикратно по 40, 30, 20 мк/кг в сутки), а также у контрольных животных, представлена на фиг.1.

Приведенные зависимости свидетельствуют о значительной ростингибирующей эффективности препарата в отношении данной опухоли. Так, торможение роста опухоли при оценке эффекта на третьи сутки после окончания курса лечения составляют 100%, 90% и 80% соответственно, при однократном (70 мг/кг) и пятикратном (40 или 30 мг/кг в сутки) введениях препарата. Применение препарата в относительно низкой дозе 20 мг/кг в сутки пятикратно приводит к торможению роста опухоли на 45-50% (первые сутки после окончания курса лечения).

Терапевтический индекс (ТИ50) препарата, определяемый для данной модели как отношение LD50 к ED50, составляет величину, равную 4.

Сопоставление кинетики развития опухоли у леченных и контрольных животных позволяет оценить длительность сохранения ростингибирующего эффекта препарата.

Как видно из представленных на фиг.2 зависимостей, торможение роста опухоли сохраняется на уровне не менее 70% на протяжении 7 суток после окончания введения препарата в дозе 70 мг/кг однократно и в течение 4 суток после пятикратного введения препарата по 40 мг/кг в сутки.

Даже в более отдаленные сроки - через 10 суток после применения препарата в указанных дозах - торможение роста опухоли составляет не менее 50% по сравнению с контролем (фиг.2А).

Характер изменения во времени кинетического критерия (фиг.2Б) также свидетельствует о том, что после применения препарата в дозе 70 мг/кг однократно значения этого показателя на протяжении 7 суток после введения соединения (1а) остаются в области величин, соответствующих значительному ростиингибирующему эффекту (>0.4). Кинетическая оценка противоопухолевого эффекта препарата при различных режимах введения дает основание полагать, что оптимальными схемами его применения являются однократное введение в дозе 70 мг/кг либо пятикратное применение по 40 мг/кг в сутки (фиг.2).

Таким образом, на примере соединения (Iа) показана значительная противоопухолевая эффективность в отношении меланомы В16 (торможение развитие опухоли в зависимости от режима введения препарата составляет 70-90%), а также в отношении опухоли Эрлиха, развитие которой полностью ингибируется. Аналогичные результаты были получены для остальных описанных соединений.

Полученные результаты позволяют сделать вывод о перспективности дальнейших испытаний заявленных соединений с целью создания новых противоопухолевых лекарственных средств.

Таблица 1№ соед.X1X2R2R2R3Линия клетокIC50, MIaBrHL-araСН3НCaOv>10-6IaBrHL-araСН3НMS3× 10-6IbBrHL-araСН3NH2CaOv0.8× 10-6IbBrHL-araСН3NH2Colo386× 10-6IcBrHL-araСН3ОНCaOv>10-5IcBrHL-araСН3ОНColo38>10-5IdBrHL-araСН3NHCHOCaOv2× 10-5IdBrHL-araСН3NHCHOColo3810-5IfHHD-LacСН3NH2MS10-5IgHHD-LacСН3ОНColo38>10-5IhHHD-LacСН3NHCHOCaOv>10-5Таблица 2Доза, мг/кг в суткиСхема введенияСредняя продолжительность жизни животных, суткиУвеличение средней продолжительности жизни животных по сравнению с контролем80*Однократно13.2±1.823.460однократно10.2±1.117.630*пятикратно12.5±1.216.820шестикратно10.4±0.919.210шестикратно9.6±0.5514.35шестикратно9.4±0.5512Контроль-8.4±0.55-*Средняя продолжительность жизни животных в контроле для указанного опыта составила 10.7±1.2 суток.Таблица 3Доза, мг/кг в суткиСхема введенияОбъем асцитической жидкости, млТорможение роста опухоли, %60однократно010030шестикратно010020шестикратно010010шестикратно0100Контроль-8.6±2.1-

Похожие патенты RU2255089C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ N-ГЛИКОЗИДОВ ИНДОЛО[2,3-а]ПИРРОЛО[3,4-с]КАРБАЗОЛ-5,7-ДИОНОВ, ОБЛАДАЮЩИХ ЦИТОТОКСИЧЕСКОЙ И ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2009
  • Мельник Сталина Яковлевна
  • Власенкова Наталья Кирилловна
  • Гараева Людмила Давидовна
  • Голубева Ирина Сергеевна
  • Горюнова Ольга Васильевна
  • Ерёмина Вера Александровна
  • Маркова Надя Петкова
  • Миникер Татьяна Давидовна
  • Плихтяк Ирина Леонидовна
  • Тихонова Надежда Ивановна
  • Эктова Лидия Владимировна
  • Ярцева Ирина Вячеславовна
RU2427585C9
N-ГЛИКОЗИДЫ ИНДОЛО[2,3-a]ПИРРОЛО[3,4-c]КАРБАЗОЛОВ, ОБЛАДАЮЩИЕ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2014
  • Борисова Лариса Михайловна
  • Голубева Ирина Сергеевна
  • Горюнова Ольга Васильевна
  • Ерёмина Вера Александровна
  • Жукова Ольга Степановна
  • Киселёва Марина Петровна
  • Маркова Надя Петкова
  • Медведева Лидия Александровна
  • Мельник Сталина Яковлевна
  • Миникер Татьяна Давыдовна
  • Смирнова Зоя Сергеевна
  • Тихонова Надежда Ивановна
  • Фетисова Лариса Владимировна
  • Эктова Лидия Владимировна
  • Ярцева Ирина Вячеславовна
RU2548045C1
Производное класса N-гликозидов индоло[2,3-а]пирроло[3,4-с]карбазол-5,7-дионов - N-{ 12-(β-D-ксилопиранозил)-5,7-диоксо-индоло[2,3-а]пирроло[3,4-с] карбазол-6-ил} пиридин-2-карбоксамид, обладающее цитотоксической и противоопухолевой активностью 2017
  • Голубева Ирина Сергеевна
  • Еремина Вера Александровна
  • Моисеева Наталья Ивановна
  • Эктова Лидия Владимировна
  • Яворская Надежда Петровна
RU2667906C1
ПРОТИВООПУХОЛЕВОЕ СРЕДСТВО 2014
  • Ланцова Анна Владимировна
  • Оборотова Наталия Александровна
  • Орлова Ольга Львовна
  • Полозкова Алевтина Павловна
  • Шпрах Зоя Сергеевна
  • Санарова Екатерина Викторовна
  • Смирнова Зоя Сергеевна
  • Киселева Марина Петровна
  • Борисова Лариса Михайловна
  • Игнатьева Елена Владимировна
  • Гулякин Илья Дмитриевич
RU2572691C1
ПРОИЗВОДНЫЕ ИНДОЛОКАРБАЗОЛОВ, БЛОКИРУЮЩИЕ ВАСКУЛОГЕННУЮ МИМИКРИЮ В ОПУХОЛИ 2014
  • Вартанян Амалия Арташевна
  • Барышникова Мария Анатольевна
  • Еремина Вера Александровна
  • Миникер Татьяна Давидовна
  • Тихонова Надежда Ивановна
  • Кузьмина Наталья Евгеньевна
  • Эктова Лидия Владимировна
RU2557554C1
Средство для терапии опухолей 2019
  • Дмитриева Мария Вячеславовна
  • Борисова Лариса Михайловна
  • Киселева Марина Петровна
  • Голубева Ирина Сергеевна
  • Эктова Лидия Владимировна
  • Еремина Вера Александровна
  • Тихонова Надежда Ивановна
  • Орлова Ольга Львовна
  • Николаева Людмила Леонидовна
  • Шпрах Зоя Сергеевна
  • Ланцова Анна Владимировна
  • Гусев Дмитрий Васильевич
  • Игнатьева Елена Владимировна
  • Оборотова Наталия Александровна
  • Кульбачевская Наталия Юрьевна
  • Коняева Ольга Ивановна
  • Ермакова Надежда Павловна
RU2726801C1
ПРОТИВООПУХОЛЕВОЕ ПРОИЗВОДНОЕ НАФТОИНДОЛ-3-КАРБОКСАМИДА 2019
  • Щекотихин Андрей Егорович
  • Тихомиров Александр Сергеевич
  • Литвинова Валерия Александровна
  • Трещалин Иван Дмитриевич
RU2712191C1
Способ получения аминокислотных аналогов противоопухолевого антибиотика ребеккамицина 2020
  • Горюнова Ольга Васильевна
  • Миронова Мария Владимировна
  • Голубева Ирина Сергеевна
RU2755572C1
СУЛЬФОНАМИДСОДЕРЖАЩИЕ СОЕДИНЕНИЯ ИНДОЛА 2000
  • Ханеда Тору
  • Цуруока Акихиро
  • Камата Дзунити
  • Окабе Тадаси
  • Такахаси Кейко
  • Нара Казумаса
  • Хамаока Синити
  • Уеда Норихиро
  • Ова Такаси
  • Вакабаяси Тосиаки
  • Фунахаси Ясухиро
  • Семба Таро
  • Хата Наоко
  • Ямамото Юдзи
  • Озава
  • Цукахара Наоко
RU2208607C2
ЦИТОТОКСИЧЕСКИЕ ЛИНЕЙНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ АНТРАЦЕНДИОНА, СОДЕРЖАЩИЕ В БОКОВОЙ ЦЕПИ ЦИКЛИЧЕСКИЕ ДИАМИНЫ, АКТИВНЫЕ В ОТНОШЕНИИ ОПУХОЛЕВЫХ КЛЕТОК С МНОЖЕСТВЕННОЙ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТЬЮ 2009
  • Щекотихин Андрей Егорович
  • Преображенская Мария Николаевна
  • Синкевич Юрий Борисович
  • Штиль Александр Альбертович
  • Глазунова Валерия Александровна
  • Трещалин Иван Дмитриевич
  • Трещалина Елена Михайловна
RU2412166C1

Иллюстрации к изобретению RU 2 255 089 C1

Реферат патента 2005 года ПРОИЗВОДНЫЕ ГЛИКОЗИДОВ ИНДОЛО[2,3-А]ПИРРОЛО[3,4-С]КАРБАЗОЛ-5,7-ДИОНОВ, ОБЛАДАЮЩИЕ ЦИТОТОКСИЧЕСКОЙ И ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ

Изобретение касается новых гликозидов индоло[2,3-а]пирроло[3,4-с]карбазол-5,7-дионов общей формулы (1), где R1 означает остаток моно- или дисахарида в пиранозной форме, выбранный из группы: D-Rib, L-Ara, D-Xyl, D-Gal, D-GIc, D-Lac; R2 означает атом водорода, метильную группу или остаток моно- или дисахарида; R3 означает водород, гидроксильную группу, аминогруппу или формамидогруппу; X1 и Х2 означают, каждый независимо друг от друга, атом водорода или атом брома, при условии, что они не могут означать одновременно атом водорода, а также при условии, что если R1 означает дисахаридный остаток, R2 отличен от водорода. Полученные производные обладают цитотоксической и противоопухолевой активностью, в частности в отношении меланомы В 16 и опухоли Эрлиха. 2 з.п. ф-лы, 3 табл., 2 ил.

Формула (I):

Формула изобретения RU 2 255 089 C1

1. Производные гликозидов индоло[2,3-а]пирроло[3,4-с]карбазол-5,7-дионов общей формулы

где R1 означает остаток моно - или дисахарида в пиранозной форме, выбранный из группы D-Rib, L-Ara, D-Xyl, D-Gal, D-Glc, D-Lac;

R2 означает атом водорода, метальную группу или остаток моно- или дисахарида;

R3 означает водород, гидроксильную группу, аминогруппу или формамидогруппу;

X1 и Х3 означают каждый независимо друг от друга атом водорода или атом брома, при условии, что они не могут означать одновременно атом водорода, а также при условии, что если R1 означает дисахаридный остаток, R2 отличен от водорода.

2. Соединение по п.1, обладающее цитотоксической активностью в отношении клеток меланомы MS, Colo38 и рака яичника человека CaOv.3. Соединение по п.1, обладающее противоопухолевой активностью в отношении лейкоза L1210, асцитной опухоли Эрлиха и солидной опухоли-меланомы B16.

Документы, цитированные в отчете о поиске Патент 2005 года RU2255089C1

P.Moreau et al
Synthesis, Mode of Action, and Biological Activities of Rebeccamycin Bromo Derivatives.J.Med.Chem., 1999, 42, 1816-1822
ИНДОЛОПИРРОЛОКАРБАЗОЛЬНЫЕ ПРОИЗВОДНЫЕ САХАРОВ, СОДЕРЖАЩАЯ ИХ ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБ ИНГИБИРОВАНИЯ РОСТА ОПУХОЛЕЙ 1997
  • Саулньер Марк Георг
  • Бэласубраманьян Нилакантан
  • Френнессон Дэвид Бертил
  • Ст. Лоран Денис Р.
  • Лэнгли Дэвид Р.
RU2167880C2
ПРОИЗВОДНЫЕ ИНДОЛОПИРРОЛОКАРБАЗОЛА, СПОСОБЫ ИХ ПОЛУЧЕНИЯ И СОЕДИНЕНИЕ 1992
  • Катсухиса Кодзири
  • Хисао Кондо
  • Хирохару Аракава
  • Митсуру Охкубо
  • Хироюки Суда
RU2117671C1

RU 2 255 089 C1

Авторы

Мельник С.Я.

Островская Л.А.

Аданин В.М.

Бахмедова А.А.

Блюхтерова Н.В.

Власенкова Н.К.

Гараева Л.Д.

Горюнова О.В.

Миникер Т.Д.

Плихтяк И.Л.

Рыкова В.А.

Фомина М.М.

Эктова Л.В.

Ярцева И.В.

Даты

2005-06-27Публикация

2003-12-26Подача