ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение касается способов получения некоторых ингибиторов белка переноса холестерилового эфира (CETP) и связанных с ними промежуточных соединений.
ОБОСНОВАНИЕ ИЗОБРЕТЕНИЯ
Атеросклероз и связанное с ним заболевание коронарной (венечной) артерии (CAD) являются основной причиной смертности в индустриальном обществе. Несмотря на попытки снижения вторичных факторов риска (курения, ожирения, недостатка физических упражнений) и лечения дислипидемии путем изменения режима питания и медикаментозной терапией, коронарная (ишемическая) болезнь сердца (ИБС) остается наиболее общей причиной смертности в США.
Показано, что риск развития данного заболевания четко соотносится с определенными уровнями липидов в плазме. Хотя повышенные концентрации липопротеинов низкой плотности являются наиболее распознанной формой дислипидемии, это отнюдь не единственный существенный, связанный с липидами фактор, способствующий ИБС. Низкая концентрация липопротеинов высокой плотности также является известным фактором риска ИБС (Gordon, D. J., et al.: "High-density Lipoprotein Cholesterol and Cardiovascular Disease", Circulation, (1989), 79: 8-15).
Высокие уровни LDL-холестерина и триглицерида положительно коррелируют, а высокие уровни HDL-холестерина отрицательно коррелируют с риском развития сердечно-сосудистых заболеваний. Таким образом, дислипидемия не определяет единообразно риск развития ИБС, а может включать одно или несколько отклонений, связанных с липидами.
Среди многочисленных факторов, регулирующих уровни этих зависимых источников данного заболевания в плазме, активность белка переноса холестерилового эфира (CETP) влияет на все три составляющих. Для ряда видов животных, включая человека, установлено, что роль этого гликопротеина плазмы в 70000 дальтон состоит в переносе холестерилового эфира и триглицерида между частицами липопротеинов, включающими липопротеины высокой плотности (HDL), липопротеины низкой плотности (LDL), липопротеины очень низкой плотности (VLDL) и хиломикроны. Общим результатом активности CETP является снижение HDL-холестерина и увеличение LDL-холестерина. Считается, что такое влияние на профиль липопротеинов является проатерогенным, в особенности у пациентов, чей липидный профиль представляет повышенный риск в отношении ИБС.
Не существует полностью удовлетворительной HDL-повышающей терапии. Ниацин может существенно повышать HDL, но для него имеются серьезные проблемы переносимости, приводящей к плохому соблюдению режима и схемы лечения. Фибраты и ингибиторы HMG-CoA-редуктазы только умеренно повышают HDL-C. В результате существует в значительной степени неудовлетворенная потребность медицины в хорошо переносимом средстве, которое может значительно повышать уровни HDL в плазме, тем самым обращая или замедляя прогрессирование атеросклероза. Патентная заявка PCT номер WO 00/02887 описывает применение катализаторов, включающих некоторые новые лиганды переходных металлов, в катализируемом переходным металлом образовании связей углерод-гетероатом и углерод-углерод.
Общедоступный патент США № 6140343, содержание которого включено здесь посредством ссылки, описывает, в числе прочего, ингибитор CETP - сложный изопропиловый эфир цис-4-[ацетил(3,5-бистрифторметилбензил)амино]-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты, и способы его получения (например, способ, раскрытый в примере 46).
Общедоступный патент США № 6197786, содержание которого включено здесь посредством ссылки, описывает, в числе прочего, ингибитор CETP - сложный этиловый эфир цис-4-[(3,5-бистрифторметилбензил)метоксикарбониламино]-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты, и способы его получения (например, способ, раскрытый в примере 7).
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Одним из аспектов настоящего изобретения являются способы получения соединения формулы VIIIA,
включающие присоединение соединения формулы VIIA,
в присутствии основания, предпочтительно, пиридина, к этилхлорформиату, с образованием соединения формулы VIIIA.
Дальнейший аспект настоящего изобретения составляют способы получения соединения формулы IA,
включающие присоединение соединения формулы VIIIA к 3,5-бис(трифторметил)бензилгалогениду в присутствии основания, предпочтительно трет-бутилата калия.
Следующий аспект настоящего изобретения составляют способы получения соединений формулы VIIIB,
где R1 означает бензил или замещенный бензил,
включающие присоединение соединения формулы VIIB,
где R1 принимает значения, приведенные выше для соединений формулы VIIIB, к изопропилхлорформиату, в присутствии основания, предпочтительно, пиридинового основания, с образованием соединения формулы VIIIB.
Еще один аспект настоящего изобретения составляют способы получения соединения формулы IB,
включающие стадии:
а) восстановления соединения вышеуказанной формулы VIIIB, где R1 означает бензил или замещенный бензил, восстановителем с получением сложного изопропилового эфира цис-4-амино-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты;
b) обработки указанного сложного изопропилового эфира цис-4-амино-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты вначале 3,5-бистрифторметилбензальдегидом в кислотных условиях с последующей обработкой восстановителем с получением сложного изопропилового эфира цис-4-(3,5-бистрифторметилбензиламино)-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты;
c) обработки указанного сложного изопропилового эфира цис-4-(3,5-бистрифторметилбензиламино)-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты ацетилирующим агентом с получением соединения формулы IB,
где указанные соединения формулы VIIIB получают способом, включающим присоединение вышеуказанного соединения формулы VIIB к изопропилхлорформиату с образованием соединения формулы VIIIB.
Еще один аспект настоящего изобретения составляет соединение формулы VIIIA,
В предпочтительном варианте реализации настоящего изобретения указанное соединение формулы VIIIA получают способом, включающим присоединение соединения формулы VII,
где R означает метил, к этилхлорформиату с образованием соединения формулы VIIIA.
В более предпочтительном варианте реализации указанное соединение формулы VII получают способом, включающим восстановление соединения формулы VI,
где R означает метил, бензил или замещенный бензил, восстановителем с получением восстановленного соединения и циклизацию восстановленного соединения в кислотных условиях с образованием соединения формулы VIIA.
В еще более предпочтительном варианте реализации указанное соединение формулы VI получают способом, включающим присоединение соединения формулы IV,
к соединению формулы V,
где R означает метил, бензил или замещенный бензил, в присутствии основания с образованием соединения формулы VI.
В особенности предпочтительном варианте реализации указанное соединение формулы IV получают способом, включающим проведение гидролиза соединения формулы III,
гидролизующим агентом, выбираемым из кислоты и основания, что приводит к образованию соединения формулы IV.
В самом особенно предпочтительном варианте реализации указанное соединение формулы III получают способом, включающим сочетание трифторметилбензола, пара-замещенного галогеном или O-трифлатом, с соединением формулы II,
приводящее к образованию соединения формулы III.
Термин "замещенный бензил" применительно к соединениям формулы V, VI и VII означает бензил, который замещен по бензольному кольцу одним или несколько заместителями так, что такое замещение не препятствует: (a) взаимодействию соответствующего соединения формулы V с соединением формулы IV, приводящему к образованию соответствующих соединений формулы VI, (b) восстановлению и циклизации соответствующего соединения формулы VI с образованием соответствующего соединения формулы VIIB, (c) ацетилированию соединения формулы VIIB, приводящему к образованию соединения формулы VIIIB, или (d) стадии снятия защиты для удаления соответствующей замещенной бензилоксикарбонильной группы при получении соединения формулы IB из соединения формулы VIIIB. Предпочтительными заместителями являются (C1-C3)-алкил и (C1-C3)-алкокси, а также галогены.
Химические структуры представлены здесь плоскими (планарными) схемами химических структур, представляющими собой вид сверху на плоскость структуры. Присутствующая в таких химических структурах клинообразная линия означает связь, выступающую вверх над плоскостью структуры.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Реакционная схема A иллюстрирует способ получения хирального изомера формулы II из (R)-2-амино-1-бутанола. Схема B иллюстрирует способ получения ингибиторов белка переноса сложного холестерилового эфира формулы IA и формулы IB.
СХЕМА A
СХЕМА В
Согласно схеме B соединение формулы III получают присоединением хирального изомерного соединения формулы II, ((R)-3-аминопентаннитрила), к трифторметилбензолу, который пара-замещен галогеном или O-трифлатом (-O-S(O)2CF3), в присутствии металлического катализатора, предпочтительно Pd. Для оптимального присоединения реакцию сочетания осуществляют в присутствии лиганда, предпочтительно фосфинового лиганда, и основания. Предпочтительным фосфиновым лигандом является диалкилфосфинодифениловый лиганд, предпочтительно выбираемый из 2-дициклогексилфосфино-2'-(N,N-диметиламино)дифенила и 2-дициклогексилфосфино-2'-метилдифенила. Взаимодействие предпочтительно осуществляют при температуре порядка 60°C-110°C. Хиральный изомер формулы II может быть получен из (R)-2-амино-1-бутанола (CAS# 005856-63-3) способами, известными специалисту в данной области, согласно схеме A и как описано в примере 9 экспериментальных методик.
Соединение формулы IV получают гидролизом нитрила соединения формулы III. Гидролиз может быть осуществлен в кислотных или основных условиях. Предпочтителен способ гидролиза в кислотных условиях, преимущественно с применением серной кислоты и воды. Для гидролиза с помощью основания предпочтительными основаниями являются гидроксиоснования, предпочтительно гидроксид лития, гидроксид натрия и гидроксид калия, или алкоксиоснования, предпочтительно метилат и этилат. Также для гидролиза с помощью основания предпочтительно использовать пероксид. Реакцию гидролиза предпочтительно осуществляют при температуре порядка 20-40°C.
Соединение формулы VI получают взаимодействием амида соединения формулы IV с хлорформиатом формулы V в присутствии основания, предпочтительно трет-бутилата лития. Взаимодействие предпочтительно осуществляют при температуре порядка 0-35°C. Если требуется, чтобы соединение формулы VI содержало в качестве R метил, то в качестве соединения формулы V используют метилхлорформиат. Если требуется, чтобы соединение формулы VI содержало в качестве R бензил, то используют бензилхлорформиат.
Соединение формулы VII получают взаимодействием имида соединения формулы VI с восстановителем, предпочтительно борогидридом натрия, в присутствии активатора-кислоты Льюиса, предпочтительно с ионами кальция или магния, что дает восстановленное промежуточное соединение. Взаимодействие, приводящее к получению восстановленного промежуточного соединения, предпочтительно осуществляют при температуре примерно (-20)-(+20)°C. В кислотных условиях промежуточное соединение диастереоселективно циклизуется, давая тетрагидрохинолиновый цикл формулы VII. Стадию циклизации предпочтительно осуществляют приблизительно при 20-50°C.
Ингибитор CETP формулы IA получают ацилированием соединения формулы VII, где R означает метил, по атому азота тетрагидрохинолина с помощью этилхлорформиата, в присутствии основания, предпочтительно пиридина, что приводит к образованию соединения формулы VIIIA. Взаимодействие предпочтительно осуществляют при температуре порядка 0-25°C.
Ингибитор CETP формулы IA получают алкилированием соединения формулы VIII, где R означает метил, с помощью 3,5-бис(трифторметил)бензилгалогенида, предпочтительно 3,5-бис(трифторметил)бензилбромида, в присутствии основания, предпочтительно алкоксида или гидроксида, и более предпочтительно трет-бутилата калия. Предпочтительный интервал температур для взаимодействия составляет приблизительно 25-75°C.
Ингибитор CETP формулы IB получают ацилированием соединения VII, где R означает бензил или замещенный бензил, по атому азота тетрагидрохинолина с помощью изопропилхлорформиата, в присутствии основания, предпочтительно, пиридина, что приводит к образованию соединения формулы VIIIB. Предпочтительная температура для указанного взаимодействия составляет приблизительно 0-25°C.
Ингибитор CETP формулы IB может быть затем получен из соединения формулы VIIIB вначале обработкой соединения VIIIB избытком источника водорода (например, циклогексена, газообразного водорода или формиата аммония) в присутствии подходящего катализатора в полярном растворителе (например, этаноле) для удаления бензилоксикарбонильной группы. 3,5-бистрифторметилбензильная группа соединения формулы IB может быть затем введена обработкой амина и кислоты, такой как уксусная кислота, 3,5-бистрифторметилбензальдегидом с последующей обработкой источником водорода, таким как триацетоксиборгидрид. Затем аминогруппу ацетилируют способами, известными специалисту в данной области, получая соединение формулы IB. Методика получения соединения формулы IB из соединения формулы VIIIB дополнительно описана в примере 46 общедоступного патента США № 6140343. Описание патента США № 6140343 упомянуто здесь для сведения.
ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДИКИ
Температуры плавления определены на приборе Buchi для определения температуры плавления. Спектр ЯМР регистрируют с помощью Varian Unity 400 (Varian Co., Palo Alto, CA). Химические сдвиги выражают в миллионных долях смещения в нижнюю область относительно растворителя. Формы пиков имеют следующие обозначения: с=синглет; д=дублет; т=триплет; кв=квартет; м=мультиплет; уш.с=уширенный синглет.
Пример 1
(3R)-3-(4-трифторметилфениламино)пентаннитрил
В стеклянный резервуар на 100 л, продутый чистым сухим газообразным азотом, загружают (R)-3-аминопентаннитриловую соль метансульфоновой кислоты (3000 г, 15,44 моль), карбонат натрия (2,8 кг, 26,4 моль) и метиленхлорид (21 л). Гетерогенную смесь хорошо перемешивают в течение, по меньшей мере, 2 часов. Смесь фильтруют и фильтр промывают метиленхлоридом (3×2 л). Полученный фильтрат помещают в стеклянный реакционный резервуар на 50 л, продутый чистым сухим газообразным азотом. Метиленхлорид удаляют перегонкой до тех пор, пока внутренняя температура не достигнет 50-53°C, что дает амин в виде свободного основания, представляющий собой жидкое масло. Затем резервуар охлаждают до комнатной температуры и загружают в него толуол (20 л), хлор-4-(трифторметил)бензол (4200 г, 23,26 моль) и карбонат цезия (7500 г, 23,02 моль). Через раствор барботируют газообразный азот в течение 1 часа. Ближе ко времени завершения барботирования готовят свежий раствор катализатора, загружая в круглодонную колбу на 2 л, снабженную мешалкой в виде стержня и заполненную газообразным азотом, 2-дициклогексилфосфино-2'-(N,N-диметиламино)дифенил (68 г, 0,17 моль), фенилбороновую кислоту (28 г, 0,23 г) и тетрагидрофуран (1,2 л), с последующим добавлением ацетата палладия (26 г, 0,12 моль). Раствор катализатора перемешивают при комнатной температуре в атмосфере азота в течение 15 минут. Раствор катализатора добавляют в реакционный резервуар на 50 л, используя канюлю (не впуская воздух). Смесь нагревают до внутренней температуры 79°C в атмосфере азота в течение 16 часов. Реакционный раствор охлаждают до комнатной температуры и фильтруют через Celite®. Твердые продукты промывают толуолом (3×2 л) и собирают фильтрат. Все фильтраты объединяют, получая сырой раствор указанного в заголовке соединения.
Пример 2
Амид (3R)-3-(4-трифторметилфениламино)пентановой кислоты
Водную серную кислоту (8,2 л серной кислоты и 1,1 л воды, предварительно смешанные и охлажденные до 35°C или ниже) добавляют к сырому толуольному раствору (3R)-3-(4-трифторметилфениламино)пентаннитрила примера 1. Образовавшийся двойной слой хорошо перемешивают и нагревают до 35°C в течение 17 часов. Нижний водный слой собирают и гасят водным гидроксидом натрия (95 л воды и 10,7 кг гидроксида натрия) и диизопропиловым эфиром (IPE) (40 л). После экстракции и удаления водного слоя органический слой объединяют и экстрагируют насыщенным водным NaHCO3 (10 л). Органическую фазу полученного двойного слоя концентрируют перегонкой до объема 19 л. Затем раствор охлаждают до комнатной температуры, вносят в качестве затравки амид (3R)-3-(4-трифторметилфениламино)пентановой кислоты и оставляют гранулироваться на 3 часа при перемешивании. К гетерогенной смеси добавляют циклогексан (38 л) и смесь гранулируют еще в течение 11 часов. Твердые продукты фильтруют, промывают циклогексаном (4 л), сушат в вакууме при 40°C, получая 3021 г (75%) указанного в заголовке соединения.
1H-ЯМР (400 МГц, CDCl3): 0,98 (т, 3, J=7,5), 1,60-1,76 (м, 2), 2,45 (д, 2, J=5,8), 3,73-3,80 (м, 1), 5,53 (уш.с, 1), 5,63 (уш.с, 1), 6,65, (д, 2, J=8,7), 7,39 (д, 2, J=8,7).
13C-ЯМР (100 МГц, CDCl3): 10,74, 27,80, 40,02, 51,95, 112,63, 118,9 (кв, J=32,7), 125,18 (кв, J=271,0), 126,93 (кв, J=3,8), 150,17, 174,26.
Пример 3
Сложный метиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты
В стеклянный резервуар на 100 л, продутый чистым сухим газообразным азотом, загружают амид (3R)-3-(4-трифторметилфениламино)пентановой кислоты (6094 г, 23,42 моль), изопропиловый эфир (30 л) и метилхлорформиат (2,7 кг, 29 моль). Полученную суспензию охлаждают до 2°C. В реакционный резервуар затем загружают раствор трет-бутилата лития (18-20% в ТГФ, 24,6 кг, ˜58 моль) с такой скоростью, чтобы поддерживать внутреннюю температуру ниже 10°C и предпочтительно около 5°C. Через десять минут после завершения добавления основания реакцию гасят добавлением 1,5 M соляной кислоты (36 л). Водный слой удаляют и органическую фазу экстрагируют насыщенным раствором NaCl/вода (10 л). Водный слой удаляют и органическую фазу концентрируют перегонкой в вакууме и при температуре примерно 50°C до тех пор, пока объем не снизится приблизительно до 24 л. В реакционный сосуд добавляют циклогексан (48 л) и вновь повторяют перегонку при внутренней температуре примерно 45-50°C, в вакууме, пока объем раствора в сосуде не снизится до 24 л. В реакционный сосуд добавляют вторую порцию циклогексана (48 л) и перегонку повторяют снова при внутренней температуре примерно 45-50°C, в вакууме, пока объем раствора в сосуде не снизится до 24 л. Поддерживая температуру при 50°C, в раствор вносят в качестве затравки сложный метиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты и оставляют гранулироваться при перемешивании в течение 2 часов. Затем раствор медленно охлаждают (в течение 1,5 часов) до комнатной температуры и оставляют гранулироваться при перемешивании на 15 часов. Смесь фильтруют. Полученные твердые продукты промывают циклогексаном (10 л) и сушат в вакууме при 40°C, получая 7504 г указанного в заголовке соединения (94%).
Т.пл.=142,3-142,4°C.
1H-ЯМР (400 МГц, d6-ацетон): 0,96 (т, 3, J=7,4), 1,55-1,75 (м, 2), 2,86 (дд, 1, J=6,6, 16,2), 2,96 (дд, 1, J=6,2, 16,2), 3,69 (с, 3), 3,92-3,99 (м, 1), 5,49 (уш.д, 1, J=8,7), 6,76 (д, 2, J=8,7), 7,37 (д, 2, J=8,7), 9,42 (уш.с, 1).
13C-ЯМР (100 МГц, CDCl3): 10,62, 28,10, 40,19, 51,45, 53,42, 112,54, 118,98 (кв, J=32,70), 125,16 (кв, J=270,2), 126,90 (кв, J=3,8), 150,10, 152,71, 173,40.
Пример 4
Сложный метиловый эфир (2R,4S)-(2-этил-6-трифторметил-1,2,3,4-тетрагидрохинолин-4-ил)карбаминовой кислоты
В стеклянный резервуар на 100 л, продутый чистым сухим газообразным азотом, загружают сложный метиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты (7474 г) с последующим добавлением этанола 2B (46 л) и воды (2,35 л). К раствору добавляют за одну порцию борогидрид натрия (620 г). Продувку азотом при этом сохраняют. Смесь перемешивают при комнатной температуре в течение 20 минут и затем охлаждают до -10°C. 3,3 M водный раствор хлорида магния (4,68 кг MgCl2·6H2O в 7 л воды) добавляют с такой скоростью, что внутренняя температура не превышает -5°C. Сразу после завершения добавления реакционный раствор нагревают до 0°C в течение 45 минут. Реакцию гасят, перенося реакционную смесь в резервуар на 200 л, содержащий метиленхлорид (70 л), и 1 M раствор соляная кислота/лимонная кислота (5,8 л концентрированной соляной кислоты, 64 л воды и 10,5 кг лимонной кислоты). Пространство в верхней части резервуара продувают газообразным азотом. Двойной слой перемешивают при комнатной температуре в течение двух часов. Фазы разделяют и удаляют нижний органический слой с продуктом. После удаления водного слоя органическую фазу возвращают в реакционный сосуд и экстрагируют водным раствором лимонной кислоты (6,3 кг лимонной кислоты, 34 л воды). Смесь перемешивают 1 час и оставляют отстаиваться в течение ночи. Слои разделяют и к органической фазе добавляют активированный уголь Darco® (маркировка G-60, 700 г) (Atlas Powder Co., Wilmington, DE) и раствор перемешивают в течение 30 минут. Затем смесь фильтруют через Celite® и уголь дважды промывают метиленхлоридом (14 л и 8 л). Фильтрат перегоняют, периодически добавляя гексан, с тем, чтобы заместить метиленхлорид гексаном, до общего конечного объема 70 л (всего использовано 112 л гексана). В ходе замещения продукт кристаллизуется. Сразу после достижения стабильной температуры перегонки раствор охлаждают и гранулируют при перемешивании при комнатной температуре в течение 10 часов. Твердые продукты фильтруют, промывают гексаном (14 л) и сушат при 40°C в вакууме, получая указанное в заголовке соединение (5291 г). (80%).
Т.пл.=139,0-140,5°C.
1H-ЯМР (400 МГц, d6-ацетон): 1,00 (т, 3, J=7,5), 1,51-1,67 (м, 3), 2,19 (ддд, 1, J=2,9, 5,4, 12,4) 3,44-3,53 (м, 1), 3,67 (с, 3), 4,89-4,96 (м, 1), 5,66 (уш.с, 1), 6,56 (уш.д, 1, J=8,7), 6,65 (д, 1, J=8,7), 7,20 (д, 1, J=8,7), 7,30 (уш.с, 1).
13C-ЯМР (100 МГц, CDCl3): 9,88, 29,24, 35,47, 48,09, 52,42, 52,60, 113,66, 118,90 (кв, J=33,1), 121,40, 124,08 (кв, J=3,8), 125,08 (кв, J=270,6), 125,70 (кв, J=3,8), 147,68, 157,30.
Пример 5
Сложный этиловый эфир (2R,4S)-2-этил-4-метоксикарбониламино-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты
В стеклянный резервуар на 100 л, продутый чистым сухим газообразным азотом, загружают сложный метиловый эфир (2R,4S)-(2-этил-6-трифторметил-1,2,3,4-тетрагидрохинолин-4-ил)карбаминовой кислоты (5191 г, 17,17 моль), метиленхлорид (21 л) и пиридин (4,16 л, 51,4 моль). Реакционный сосуд охлаждают до -10°C. Медленно добавляют этилхлорформиат (4,10 л, 42,9 моль) с такой скоростью, что внутренняя температура не превышает -5°C. Реакционный раствор доводят до температуры 0°C и выдерживают в течение 20 часов. Реакцию гасят добавлением к смеси диизопропилового эфира (IPE) (36 л), метиленхлорида (6,2 л) и 1,5 M раствора соляной кислоты (52 л). Полученные фазы разделяют и органический слой экстрагируют 1 M раствором гидроксида натрия (15 л). Полученные фазы разделяют и органический слой промывают насыщенным водным хлоридом натрия NaCl (15 л). Образовавшиеся фазы разделяют и органический слой концентрируют перегонкой до объема 40 л. При меньшем объеме начинается кристаллизация. Метиленхлорид замещают IPE, перегоняя смесь и периодически добавляя IPE, так чтобы поддерживать постоянный объем в 40 л при сохранении температуры 68°C (всего использовано 46 л IPE). Смесь охлаждают и оставляют гранулироваться при перемешивании при комнатной температуре в течение 19 часов. Твердые продукты фильтруют, промывают IPE (8 л) и сушат в вакууме при 40°C, получая 5668 г указанного в заголовке соединения (88%).
Т.пл.=157,3-157,6°C.
1H-ЯМР (400 МГц, d6-ацетон): 0,84 (т, 3, J=7,5), 1,26 (т, 3, J=7,0), 1,44-1,73 (м, 3), 2,59 (ддд, 1, J=4,6, 8,3, 12,9), 3,67 (с, 3), 4,14-4,28 (м, 2), 4,46-4,54 (м, 1), 4,66-4,74 (м, 1), 6,82 (уш.д, 1, J=9,1), 7,53 (с, 1), 7,58 (д, 1, J=8,3), 7,69 (д, 1, J=8,3).
13C-ЯМР (100 МГц, CDCl3): 9,93, 14,55, 28,46, 38,08, 46,92, 52,64, 53,70, 62,42, 120,83 (кв, J=3,4), 124,32 (кв, J=271,7), 124,36 (кв, J=3,4), 126,38, 126,46 (кв, J=32,7), 134,68, 139,65, 154,66, 156,85.
Пример 6
Сложный этиловый эфир (2R,4S)-4-[(3,5-бистрифторметилбензил)метоксикарбониламино]-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты
В стеклянный резервуар на 100 л, продутый чистым сухим газообразным азотом, загружают сложный этиловый эфир (2R,4S)-2-этил-4-метоксикарбониламино-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты (5175 г, 13,82 моль), CH2Cl2 (20 л) и трет-бутилат калия (1551 г, 13,82 моль) при комнатной температуре. Смесь перемешивают в течение пяти минут. К смеси добавляют одной порцией 3,5-бис(трифторметил)бензилбромид (3,50 л, 19,1 моль). Внутреннюю температуру поддерживают в пределах 20-25°C в течение 1,5 часов. По прошествии реакционного времени 2,3 часа добавляют дополнительную порцию трет-бутилата калия (46,10 г, 0,41 моль). По прошествии общего реакционного времени 4,5 часа реакцию гасят. К реакционному раствору добавляют 1,4-диазабицикло[2.2.2]октан (DABCO) (918 г, 8,18 моль) и смесь перемешивают 1 час. К реакционной смеси добавляют IPE (40 л) и 0,5 M соляную кислоту (30 л). Образовавшиеся органическую и водную фазы разделяют и органический слой экстрагируют 0,5 M соляной кислотой (2×30 л). Образовавшиеся органическую и водную фазы затем разделяют и органический слой экстрагируют насыщенным водным хлоридом натрия (15 л), и полученные органическую и водную фазы разделяют. К органическому слою добавляют безводный сульфат магния (3,5 кг) и смесь перемешивают в течение 30 минут. Затем смесь фильтруют (фильтр 0,5 микрон) в стеклянный резервуар на 50 л, используя промывку двумя порциями IPE (8 л). Фильтрат концентрируют в вакууме до общего объема 12 л при внутренней температуре 35°C, получая масло. К маслу добавляют этанол 2B (25 л) и раствор концентрируют в вакууме до объема 12 л. К раствору добавляют этанол 2B (15 л) и раствор вновь концентрируют в вакууме до объема 12 л. Раствор охлаждают до комнатной температуры и вносят в качестве затравки сложный этиловый эфир (2R,4S)-4-[(3,5-бистрифторметилбензил)метоксикарбониламино]-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты (3 г). Раствор гранулируют около 38 часов, фильтруют и промывают этанолом 2B (4 л + 2 л). Твердые продукты сушат в вакууме (без нагрева), получая 4610 г (55%) указанного в заголовке соединения. Маточный раствор от вышеуказанной фильтрации концентрируют в вакууме (температура раствора=62°C) до конечного объема 6 л и охлаждают до 38°C. В раствор вносят в качестве затравки сложный этиловый эфир (2R,4S)-4-[(3,5-бистрифторметилбензил)метоксикарбониламино]-2-этил-6-трифторметил-3,4-дигидро-2H-хинолин-1-карбоновой кислоты (0,5 г) и оставляют охлаждаться и гранулироваться при перемешивании на 19 часов. Смесь фильтруют и твердые продукты промывают EtOH 2B (2,5 л). Полученный плотный осадок на фильтре сушат в вакууме (без нагрева), получая вторую порцию в 1422 г (17%) указанного в заголовке соединения. Суммарный выход составляет 6032 г (73%).
Пример 7
Сложный бензиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты
В колбу, продутую чистым сухим газообразным азотом, загружают амид (3R)-3-(4-трифторметилфениламино)пентановой кислоты (20,11 г, 77,27 ммоль) и изопропиловый эфир (100 мл) и смесь охлаждают до -12°C. Затем добавляют бензилхлорформиат (13,25 мл, 92,8 ммоль) с последующим медленным добавлением 1,0 M раствора трет-бутилата лития в ТГФ (185,5 мл). Раствор трет-бутилата лития добавляют с такой скоростью, что внутренняя температура сохраняется ниже 0°C. Спустя пятнадцать минут после завершения добавления основания реакцию гасят, добавляя смесь изопропилового эфира (100 мл) и 1,5 M соляной кислоты (130 мл). Фазы разделяют и органический слой промывают насыщенным водным раствором хлорида натрия (130 мл). Фазы разделяют и органический слой сушат (MgSO4), фильтруют и концентрируют при частичном вакууме (при 40°C) до общего объема 100 мл. Добавляют дополнительное количество изопропилового эфира (200 мл) и раствор вновь концентрируют при частичном вакууме (при 40°C) до общего объема 100 мл. После охлаждения в раствор вносят в качестве затравки сложный бензиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты и оставляют перемешиваться при комнатной температуре в течение ночи. Оставшийся растворитель замещают циклогексаном, используя перегонку при частичном вакууме (баня 45°C, 200 мл и далее 100 мл), образовавшуюся суспензию охлаждают и перемешивают в течение 40 минут, фильтруют и сушат, получая 25,8714 г (85%) указанного в заголовке соединения.
Т.пл. 100,6-101,4°C.
1H-ЯМР (400 МГц, d6-ацетон): 0,96 (т, 3, J=7,5), 1,57-1,75 (м, 2), 2,87 (дд, 1, J=6,6, 16,2), 2,97 (дд, 1, J=6,2, 16,2), 3,94-4,00 (м, 1), 5,16 (с, 2), 5,50 (уш.с, 1), 6,75 (д, 2, J=5,7), 7,33-7,43 (м, 7), 9,52 (уш.с, 1).
13C-ЯМР (100 МГц, CDCl3): 10,66, 28,13, 40,28, 51,47, 68,25, 112,52, 118,91 (кв, J=32,3), 125,21 (кв, J=269,9), 126,92 (кв, J=3,8), 128,64, 128,98, 129,04, 135,05, 150,12, 152,12, 173,52.
Пример 8
Сложный бензиловый эфир (2R,4S)-(2-этил-6-трифторметил-1,2,3,4-тетрагидрохинолин-4-ил)карбаминовой кислоты
В колбу, продутую чистым сухим газообразным азотом, загружают сложный бензиловый эфир (3R)-[3-(4-трифторметилфениламино)пентаноил]карбаминовой кислоты (11,51 г, 29,18 ммоль) и 95% этанол (80 мл) и раствор охлаждают на бане лед/ацетон (˜ -12°C). Затем к раствору добавляют борогидрид натрия (0,773 г, 20,4 ммоль). Внутренняя температура реакционной смеси равна -11,5°C. В реакционную колбу медленно добавляют раствор MgCl2·6H2О (6,23 г, 30,6 ммоль, в 13 мл Н2O). Внутреннюю температуру поддерживают ниже -5°C, регулируя скорость добавления. Сразу после того, как весь раствор магния был добавлен, температуру раствора поднимают до 0°C и раствор перемешивают в течение 30 минут. Затем реакцию гасят добавлением метиленхлорида (115 мл), 1 н. соляной кислоты (115 мл) и лимонной кислоты (14,02 г, 72,97 ммоль). Образовавшийся двойной слой перемешивают при комнатной температуре. Спустя 3,75 часа реакция циклизации завершается по данным ЖХВР-анализа, и фазы разделяют. К органическому слою добавляют воду (58 мл) и лимонную кислоту (8,41 г, 43,77 ммоль) и смесь перемешивают при комнатной температуре в течение 45 минут. Фазы разделяют и к органическому слою добавляют активированный древесный уголь g-60 Darco® (1,52 г) (Atlas Powder Co., Wilmington, DE). После перемешивания в течение 45 минут раствор фильтруют через Celite® и промывают метиленхлоридом (2×15 мл). Затем растворитель в фильтрате замещают гексаном (приблизительно 350 мл) путем перегонки при атмосферном давлении и концентрации смеси до общего объема 230 мл. Смесь перемешивают при комнатной температуре в течение 14 часов, фильтруют и сушат, получая 9,0872 г (82%) указанного в заголовке соединения.
Т.пл. 154,0-155,2°C.
1H-ЯМР (400 МГц, d6-ацетон): 1,00 (т, 3, J=7,5), 1,51-1,69 (м, 3), 2,17-2,26 (м, 1), 3,46-3,54 (м, 1), 4,96 (ддд, 1, J=5,4, 9,5, 11,6), 5,14 (д, 1, J=12,9), 5,20 (д, 1, J=12,9), 5,66 (уш.с, 1), 6,65 (д, 1, J=8,3), 6,71 (уш.д, 1, J=9,1), 7,20 (дд, 1, J=1,9, 8,9), 7,30-7,43 (м, 6).
13C-ЯМР (100 МГц, CDCl3): 9,89, 29,24, 35,34, 48,16, 52,44, 67,27, 113,70, 118,85 (кв, J=32,7), 121,37, 124,12 (кв, J=3,8), 125,14 (кв, J=270,6), 125,72 (кв, J=3,8), 128,38, 128,51, 128,86, 136,57, 147,71, 156,74.
Пример 9
(R)-3-аминопентаннитриловая соль метансульфоновой кислоты
Стадия 1: сложный 2-трет-бутоксикарбониламинобутиловый эфир метансульфоновой кислоты.
Шаг #1: BOC ангидрид (515,9 г) в этилацетате (400 мл) добавляют к раствору R-(-)-2-амино-1-бутанола (200,66 г) в этилацетате (1105 мл) с помощью капельной воронки. Реакционную смесь перемешивают приблизительно 30 минут. Добавляют тетраметилэтилендиамин (TMEDA) (360 мл) и реакционную смесь охлаждают приблизительно до 10°C. К реакционной смеси добавляют за 30-минутный период метансульфонилхлорид (184,7 мл). После перемешивания в течение 1 часа реакционную смесь фильтруют и фильтрат собирают.
Шаг #2: BOC ангидрид (514,5 г) в этилацетате (400 мл) добавляют к раствору R-(-)-2-амино-1-бутанола (200,12 г) в этилацетате (1101 мл) с помощью капельной воронки. Реакционную смесь перемешивают приблизительно 30 минут. Добавляют тетраметилэтилендиамин (TMEDA) (359,1 мл) и реакционную смесь охлаждают приблизительно до 10°C. К реакционной смеси добавляют за 30-минутный период метансульфонилхлорид (184,1 мл). После перемешивания в течение 1 часа реакционную смесь объединяют с фильтратом по шагу # 1 и фильтруют. Твердые продукты промывают 400 мл этилацетата. К фильтрату добавляют гексан (12 л). Смесь охлаждают на бане лед/вода. Спустя приблизительно 2,5 часа твердые продукты отделяют фильтрованием, промывают гексаном (2 л) и сушат в вакууме, получая указанное в заголовке соединение (971,57 г).
Стадия 2: сложный трет-бутиловый эфир (1-цианометилпропил)карбаминовой кислоты. Цианид натрия (24,05 г) добавляют к диметилформамиду (ДМФА) (500 л) и смесь перемешивают при 35°C в течение 30 минут. Добавляют тетрабутиламмонийбромид и реакционную смесь перемешивают при 35°C в течение двух часов. Добавляют сложный 2-трет-бутоксикарбониламинобутиловый эфир метансульфоновой кислоты (101,23 г) и реакционную смесь перемешивают при 35°C в течение ночи. Затем смесь распределяют между двумя литрами воды и одним литром изопропилового эфира. Полученные органическую и водную фазы разделяют и промывают последовательно водой и насыщенным раствором хлорида натрия в воде. Органический слой сушат над сульфатом магния, фильтруют и концентрируют, получая твердый продукт (65,22 г). Твердый продукт (61,6 г) переносят в колбу, снабженную подвесной мешалкой. Добавляют гексан и колбу нагревают до 65°C. После перехода всех твердых продуктов в раствор смесь охлаждают до температуры окружающей среды. Смесь перемешивают в течение ночи. Полученные твердые продукты отделяют фильтрованием, получая указанное в заголовке соединение (52,32 г).
Стадия 3: (R)-3-аминопентаннитриловая соль метансульфоновой кислоты. Метансульфоновую кислоту (71 г) добавляют к раствору сложного трет-бутилового эфира (1-цианометилпропил)карбаминовой кислоты в тетрагидрофуране (530 мл). Реакционную смесь нагревают до 40°C в течение приблизительно 30 минут. Температуру поднимают до 45°C и перемешивают приблизительно один час. Температуру поднимают еще до 65°C и реакционную смесь перемешивают в течение пяти часов. Смеси дают охладиться до температуры окружающей среды. Полученные твердые продукты выделяют фильтрованием, получая указанное в заголовке соединение (41,53 г).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ 2-[(3R)-3-МЕТИЛМОРФОЛИН-4-ИЛ]-4-(1-МЕТИЛ-1H-ПИРАЗОЛ-5-ИЛ)-8-(1H-ПИРАЗОЛ-5-ИЛ)-1,7-НАФТИРИДИНА | 2019 |
|
RU2802512C2 |
СПОСОБЫ ПОЛУЧЕНИЯ ЗАМЕЩЕННЫХ АРИЛКОНДЕНСИРОВАННЫХ АЗАПОЛИЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ, ПРОМЕЖУТОЧНЫЕ ПРОДУКТЫ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ | 2002 |
|
RU2282619C9 |
ЗАМЕЩЕННОЕ ПИРИДИНОВОЕ СОЕДИНЕНИЕ | 2011 |
|
RU2572606C2 |
ПОЛИЦИКЛИЧЕСКИЕ АНТАГОНИСТЫ TLR7/8 И ИХ ПРИМЕНЕНИЕ В ЛЕЧЕНИИ ИММУННЫХ РАССТРОЙСТВ | 2016 |
|
RU2783748C2 |
ПИРИДИНСУЛЬФОНАМИД И ЕГО ПРИГОДНЫЕ В СЕЛЬСКОМ ХОЗЯЙСТВЕ СОЛИ, ГИДРАТЫ ИЛИ КОМПЛЕКСЫ СО СПИРТАМИ C - C, ГЕРБИЦИДНЫЕ КОМПОЗИЦИИ, СПОСОБ БОРЬБЫ С НЕЖЕЛАТЕЛЬНОЙ РАСТИТЕЛЬНОСТЬЮ, СПОСОБ БОРЬБЫ С ЛИСОХВОСТОМ, ПРОМЕЖУТОЧНЫЙ ПРОДУКТ ДЛЯ ЕГО СИНТЕЗА | 1993 |
|
RU2117666C1 |
СПОСОБ ПОЛУЧЕНИЯ АЗЕТИДИНОНОВЫХ СОЕДИНЕНИЙ И ПРОИЗВОДНЫХ АЗЕТИДИНОНОВЫХ СОЕДИНЕНИЙ | 2015 |
|
RU2650687C1 |
ПИРАЗОЛЬНЫЕ СОЕДИНЕНИЯ, ЗАМЕЩЕННЫЕ ГЕТЕРОАРИЛОМ, И ИХ ПРИМЕНЕНИЕ В ФАРМАЦЕВТИКЕ | 2019 |
|
RU2805312C2 |
ПРОИЗВОДНЫЕ 3-АМИНОПИПЕРИДИНА И СПОСОБЫ ИХ ПОЛУЧЕНИЯ | 2003 |
|
RU2309147C9 |
СОЛЬ АНТАГОНИСТА CCR-2 | 2004 |
|
RU2317295C1 |
АЛЬТЕРНАТИВНЫЕ СПОСОБЫ СИНТЕЗА ИНГИБИТОРОВ РЕНИНА И ИХ ПРОМЕЖУТОЧНЫХ СОЕДИНЕНИЙ | 2005 |
|
RU2411230C2 |
Изобретение относится к усовершенствованному способу получения ингибитора белка переноса холестерилового эфира (СЕТР) формулы IA за счет использования доступного нового промежуточного соединения формулы VIIIA, которое подвергают взаимодействию с 3,5-бис(трифторметил)бензилгалогенидом в присутствии основания. 3 н. и 7 з.п. ф-лы.
включающий присоединение соединения формулы VIIA
к этилхлорформиату в присутствии основания с образованием соединения формулы VIIIA.
включающий присоединение соединения формулы VIIIA
к 3,5-бис(трифторметил)бензилгалогениду в присутствии основания.
к этилхлорформиату с образованием соединения формулы VIIIA.
где R означает метил, восстановителем с получением восстановленного соединения и циклизацию восстановленного соединения в кислотных условиях с образованием соединения формулы VIIA.
к соединению формулы V
где R означает метил, в присутствии основания с образованием соединения формулы VI.
гидролизующим агентом, выбираемым из кислоты и основания, что приводит к образованию соединения формулы IV.
приводящее к образованию соединения формулы III.
RU 2001910 C1, 30.10.1993 | |||
WO 00/17164 A1, 30.03.2000 | |||
WO 00/17165 A1, 30.03.2000. |
Авторы
Даты
2005-08-27—Публикация
2002-04-08—Подача