СОРБЕНТ ДЛЯ УДАЛЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ ИЗ ШЕЛУХИ ГРЕЧИХИ Российский патент 2005 года по МПК B01J20/24 C02F1/28 

Описание патента на изобретение RU2259874C2

Изобретение относится к области охраны окружающей среды и касается производства сорбентов из растительного сырья, применяемых для очистки водоемов, промышленных отходов от нефти и нефтепродуктов.

Использование экологически чистого природного сырья для очистки промышленных и бытовых вод, очистки водоемов - одно из основных направлений исследований, проводимых в области охраны окружающей среды. К таким видам сырья относятся продукты сельского хозяйства, в частности продукты растениеводства. Например, известно применение в качестве такого сырья семян или кожицы фасоли, семян люцерны, клевера (патенты РФ № 2110481, С 02 F 1/28, 1998, № 2129096, С 02 F 1/28, 1999), которые используются для очистки промышленных и бытовых стоков от солей металлов, в частности хрома. В качестве сорбента для удаления масел из воды применяется карбонизированная скорлупа грецкого ореха (США, патент № 3992291, В 01 D 23/24, 1976), для очистки поверхности воды от нефти применяются хлопковые отходы ватного производства (СССР, А.С. № 1430355, С 02 F 1/28,1994), необработанная лузга зерен гречихи (РФ, патент № 2114064, С 02 F 1/28, 1998), карбонизированная лузга зерен гречихи (РФ, патент № 2031849, С 02 F 1/28, 1995), а для очистки воды от масляных загрязнений применяется карбонизированная лузга зерен риса (РФ, патент № 2036843, С 02 F 1/28, 1995 ).

Для расширения ассортимента сорбентов на основе растительного сырья и создания унифицированного сорбента с повышенной сорбционной эффективностью предлагается новый сорбент, являющийся продуктом обработки шелухи гречки и представляющий собой органическую матрицу многоразмерной пористой структуры с размером пор от 2 до 35 мкм с распределённой в ней калийсодержащей минеральной составляющей при весовом соотношении калийсодержащей минеральной составляющей к углероду, равном 1:16-20. К предпочтительным свойствам сорбента относится следующий диапазон распределения пор сорбента по их размерности: 2-20 мкм - 63-66%, 20-30 мкм - 26-37%, 30-35 мкм - 2-8%.

Таблица 1
Распределение пор сорбента ГС по размерам
Размеры пор, мкмДиапазон распределения пор, %2-2063-6620-3026-3730-352-8

В качестве растительного сырья применяется шелуха гречихи. Вышеуказанные признаки сорбента создаются при получении сорбента термообработкой шелухи гречихи при температуре 460-700°С. Процесс термообработки может протекать в данном температурном режиме в барабанной, шахтной, камерной печах при атмосферном давлении, в плазме высокочастотного или дугового разряда при атмосферном давлении или в плазме высокочастотного разряда при давлении ниже атмосферного.

Основным преимуществом нового сорбента является его повышенная сорбционная емкость, что достигается за счет образования органоминерального продукта, в котором в качестве минеральной составляющей выступает калий. Весовое соотношение минеральной калийсодержащей составляющей к углероду равно 1:16-20. Именно сочетание сорбционной активности калийной составляющей, распределенной в органической матрице, определяет повышенную сорбционную активность сорбента, который приобретает многоразмерную пористую структуру с размерами пор от 2 до 35 мкм. Наличие калийных групп в сорбенте подтверждаются рентгенометрическими исследованиями (Фиг.1).

Рентгенограммы сорбентов, полученные термическим способом (ГСТ) и в ВЧ плазме пониженного давления (ГСПД), показывают, что основным компонентом сорбента является калий. Ему соответствует пик рентгенограммы с максимальной площадью 19261. Содержание остальных элементов незначительно, поэтому они могут рассматриваться как примеси, в меньшей степени определяющие свойства сорбента. На рентгенограмме, например сорбента модификации ГСТ, видны линии элементов Са, Al, P, Cu. Соответствующие им площади на спектрограмме равны: для Са - 3969, Р - 2108, Cu - 1738. Al - 612. Рентгенограммы сорбентов, полученные в дуговой плазме (ГСД) и в ВЧ плазме атмосферного давления (ГСАД), практически не отличаются от рентгенограмм сорбентов соответственно ГСТ и ГСПД.

Многопористость структуры сорбента (Фиг.2) является существенным признаком, обеспечивающим повышенную сорбционную активность. Это объясняется тем, что поры сорбента, в зависимости от их размера, играют различную роль в удерживании загрязнений или участвуют в удержании адсорбата, что более характерно для малых пор, либо участвуют в транспортировке адсорбата к месту удержания, что более характерно для более крупных пор. Наибольший сорбционный эффект, подтвержденный экспериментально, достигается при получении сорбента с распределением пор, указанных в таблицах 1, 2. В качестве исходного сырья применяется шелуха гречихи как калийобогащенный продукт. Предпочтительное применение в качестве исходного сырья шелухи гречихи связано с экономической целесообразностью, что объясняется образованием большого количества отходов (шелухи гречихи) при производстве крупы гречихи.

Данные признаки сорбента достигаются при проведении процесса его получения при определенном режиме, а именно при температурном интервале 460-700°С. Соблюдение такого режима обеспечивает максимальное получение глухих пор, а именно пор, не сообщающихся с окружающими порами и межпоровым пространством в непосредственном центре сорбентов, что обуславливает их высокие сорбционные свойства. При температурах выше 700°С, как это предлагается в способе-прототипе, происходит полное разложение органической матрицы и уничтожение органоминеральной структуры, что приводит к ухудшению сорбционных свойств, которые уже в этом случае выполняет только один углерод. Более низкие температурные режимы термообработки (ниже 460°С) не обеспечивают получение многопористой структуры с заданным распределением пор, что отрицательно сказывается на эффективности сорбента. Примерами осуществления нового способа получения сорбента является описания процессов, проводимых: термической обработкой при атмосферном давлении, в высокочастотной плазме при атмосферном давлении, в дуговой плазме при атмосферном давлении и в плазме при пониженном давлении (см.табл.1).

Испытания сорбента проведены при сборе нефтепродуктов с поверхности воды и при очистке сточных промышленных вод, загрязненных нефтепродуктами. В испытаниях использовались различные нефтепродукты: Мордово-Кармальский природный битум, нефти Уратьминская и Привятская, месторождений Neucen, Rio Negro (Аргентина), минеральные и компрессорные масла производства России и Аргентины, нефтеотходы сервисных станций на объектах в России, Прибалтике и Аргентине.

Проведение испытаний сорбента с поверхности воды, загрязненной нефтепродуктами

На поверхность воды наносилось фиксированное количество нефти. Специальными пробоотборниками в трех точках нефтяного пятна отбирались пробы для определения концентрации нефти в воде. Затем на нефтяное пятно наносился сорбент модификации ГС и через 15 минут механическим способом собирался насыщенный нефтепродуктами сорбент. В трех точках аналогичными пробоотборниками отбирались пробы воды после очистки. Степень очистки по нефти составила 98 %.

Проведение испытаний сорбента при очистке сточных промышленных вод

Через фильтрующую колонку с сорбентом пропускалась загрязненная нефтепродуктами вода. Скорость потока смеси вода - нефть через сорбент - 150 мл/мин, температура воды - 12°С. Отбор проб на определение остаточного содержания нефти осуществляется из последних 100 мл смеси, прошедшей сорбент. Для определения степени очистки пробы воды объемом 5 мл экстрагировались 2 мл дихлорметана. Сконцентрированные органические экстракты подвергались хромато - масс- спектрометрическому анализу на масс-спектрометре МАТ-90 фирмы "Финниган-МАТ". Результаты анализа проб воды, полученных после очистки водно-нефтяных смесей, показали, что суммарная концентрация нефтепродуктов даже в пробе с максимальной насыщенностью не превышает 0,03 мг/л.

Таблица 2. Влияние технологических условий на состав и свойства сорбентов ГС

Таблица 2
Влияние технологических условий на состав и свойства сорбентов ГС
№ образцовПараметрыТемпература процесса, °С4504605006007007501. Термическая обработкаСоотношение К:С, %1:14,01:16,01:17,51:18,01:201:23,7Размеры пор, (d), %30-35 мкм0,52568920-30 мкм3935302926242-20 мкм606365656667Сорбционная емкость (г/г)1:31:4,01:4,51:5,51:5,91:3,82. Обработка в ВЧ плазме атмосферного давленияСоотношение К: С, %1:14,01:16,01:17,01:18,01:20,01:23,3Размеры пор, %30-35 мкм12,5568920-30 мкм3935312926242-20 мкм6062,564656667Сорбционная емкость (г/г)1:31:4,01:5,01:5,41:61:3,43. Обработка в дуговой плазмеСоотношение К: С, %1:14,01:16,11:17,41:18,21:19,01:23,0Размеры пор, (d), %30-35 мкм12,5468920-30 мкм3935302926242-20 мкм6062,566656667Сорбционная емкость1:31:4,01:4,91:5,51:61:3,5

4. Обработка в ВЧ плазме пониженного давленияСоотношение К: С, %1:14.01:16,01:17,51:18,61:20,01:23,5Размеры пор, (d), %30-35 мкм12678920-30 мкм3935302926242-20 мкм606364656667Сорбционная емкость1:31:4,01:5,51:5,51:61:2,8*) - сорбционная емкость по углеводородам нефти.

На фиг.2 представлено распределение размеров пор сорбентов модификации ГС, полученных разными способами.

Необходимые характеристики модификации ГС и технологические режимы достигаются при следующих параметрах установок:

- При способе термообработки в ВЧ разряде пониженного давления: расход плазмообразующего газа 0,08-0,1 г/с; мощность в разряде 1-1,5 кВт; давление в разрядной зоне 0,4

- 0,5 атм, температура процесса 460-700°С. При способе термообработки в ВЧ разряде атмосферного давления: расход плазмообразующего газа 0,1-1,5 г/с; мощность в разряде 40-60 кВт; давление в разрядной зоне 1 атм., температура процесса 460-700°С.

- При способе термообработки в дуговом разряде: расход плазмообразующего газа 1-2 г/с; мощность в разряде 50-70 кВт; давление в разрядной зоне 1атм., температура процесса 460-700°С.

- При способе термообработки в барабанной или шахтной печи: расход по сырью 150-450 кг/час; выход по готовому продукту 50-150 кг/час, температура процесса 460-700°С.

- При способе термообработки в камерной печи: загрузка по сырью 3-15 кг, выход по готовому продукту 1-5 кг, температура процесса 460-700°С. Время пребывания в реакционной зоне 10-30 мин.

Похожие патенты RU2259874C2

название год авторы номер документа
СОРБЕНТ ДЛЯ УДАЛЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ ИЗ ЖИДКИХ СРЕД И СПОСОБ ЕГО ПОЛУЧЕНИЯ ИЗ ШЕЛУХИ РИСА 2003
  • Гафаров И.Г.
  • Кузнецов А.И.
  • Расторгуев Ю.И.
  • Тимофеев В.С.
  • Тёмкин О.Н.
  • Хоанг Ким Бонг
RU2259875C2
СОРБЕНТ ДЛЯ УДАЛЕНИЯ НЕФТЕХИМИЧЕСКИХ ЗАГРЯЗНЕНИЙ ИЗ ЖИДКИХ СРЕД И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Абдуллин Ильдар Шаукатович
  • Гафаров Илдар Гарифович
  • Мишулин Георгий Маркович
  • Паскалов Георгий Захарьевич
  • Светлакова Татьяна Николаевна
  • Усенко Виталий Александрович
  • Шарафеев Рустем Фаридович
RU2459660C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ УДАЛЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ С ПОВЕРХНОСТИ ВОДЫ 2015
  • Алексеева Анна Александровна
  • Шаймарданова Алсу Шамилевна
  • Степанова Светлана Владимировна
  • Шайхиев Ильдар Гильманович
  • Гафаров Ильдар Гарифович
  • Абдуллин Ильдар Шаукатович
RU2595654C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ВОДЫ 2007
  • Каблов Виктор Федорович
  • Иощенко Юлия Павловна
RU2352388C1
Способ получения сорбционных материалов 2019
  • Политаева Наталья Анатольевна
  • Смятская Юлия Александровна
  • Долбня Инна Валерьевна
RU2708860C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ СБОРА НЕФТИ И НЕФТЕПРОДУКТОВ 2021
  • Мещеряков Станислав Васильевич
  • Еремин Иван Сергеевич
  • Сидоренко Дмитрий Олегович
  • Зайцева Елена Александровна
RU2771026C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА 2005
  • Земнухова Людмила Алексеевна
  • Шкорина Екатерина Дмитриевна
  • Филиппова Ирина Анатольевна
RU2316393C2
Порошкообразный магнитный сорбент для сбора нефти 2022
  • Мельников Игорь Николаевич
  • Ольшанская Любовь Николаевна
  • Остроумов Игорь Геннадьевич
  • Пичхидзе Сергей Яковлевич
RU2805655C1
РЕМЕДИАТОР 2013
  • Лобачева Галина Константиновна
  • Клопова Татьяна Юрьевна
  • Чадов Олег Петрович
  • Вартанов Рэм Рональдович
  • Карпов Андрей Викторович
  • Курин Алексей Александрович
RU2586900C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ СБОРА НЕФТИ И НЕФТЕПРОДУКТОВ ПРИ ИХ РАЗЛИВАХ ПУТЕМ УТИЛИЗАЦИИ РИСОВОЙ ШЕЛУХИ 2005
  • Земнухова Людмила Алексеевна
  • Хохряков Александр Александрович
RU2304559C2

Иллюстрации к изобретению RU 2 259 874 C2

Реферат патента 2005 года СОРБЕНТ ДЛЯ УДАЛЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ ИЗ ШЕЛУХИ ГРЕЧИХИ

Сорбент представляет собой органическую матрицу многоразмерной пористой структуры с размером пор от 2 до 35 мкм с распределенной в ней минеральной калийсодержащей составляющей при весовом соотношении её к углероду в матрице 1:(16-20). Получение сорбента проводится при температуре 460 - 700°С в барабанной, шахтной или камерной печах при атмосферном давлении; в плазме высокочастотного разряда пониженного давления, в плазме высокочастотного или дугового разрядов атмосферного давления. В качестве исходного сырья используют гречневую шелуху. Изобретение позволяет получить эффективный сорбент. 2 н. и 3 з.п. ф-лы, 2 ил., 2 табл.

Формула изобретения RU 2 259 874 C2

1. Сорбент для удаления нефти и нефтепродуктов из жидких сред, являющийся продуктом обработки шелухи гречихи, характеризуемый тем, что представляет собой органическую матрицу многоразмерной пористой структуры с размером пор 2-35 мкм, с распределенной в ней минеральной калийсодержащей составляющей при весовом соотношении ее к углероду в матрице, равном 1:16-20.2. Сорбент по п. 1, характеризуемый тем, что имеет следующее распределение пор по размерам: 2-20 мкм 63-66%, 20-30 мкм 26-37%, 30-35 мкм 2-8%.3. Способ получения сорбента для удаления нефти и нефтепродуктов из жидких сред термообработкой шелухи гречихи, отличающийся тем, что процесс термообработки проводят при температуре, равной 460-700°С.4. Способ получения сорбента по п. 3, отличающийся тем, что процесс термообработки проводят в барабанной, шахтной или камерной печах при атмосферном давлении.5. Способ получения сорбента по п. 3, отличающийся тем, что процесс переработки проводят в плазме высокочастотного разряда пониженного давления или в плазме высокочастотного или дугового разрядов атмосферного давления.

Документы, цитированные в отчете о поиске Патент 2005 года RU2259874C2

СПОСОБ УДАЛЕНИЯ МАСЛЯНЫХ ЗАГРЯЗНЕНИЙ ИЗ ВОДЫ 1992
  • Гафаров Илдар Гарифович[Ru]
  • Садыков Асгат Набиевич[Ru]
  • Мазур Владимир Николаевич[Ru]
  • Сунцова Ольга Александровна[Ru]
  • Лукач Петер[Hu]
  • Сентдьердьи Геза[Hu]
  • Сидельников Александр Алексеевич[Ru]
RU2036843C1
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ЖИДКОКРИСТАЛЛИЧЕСКИХ ИНДИКАТОРОВ 1991
  • Алекберов М.И.
  • Сорокин В.М.
  • Гасанов А.С.
  • Рашидов М.М.
  • Бабак О.В.
  • Бабаев И.С.
  • Ахмедов Д.Х.
  • Новохацкая М.В.
RU2031449C1
СПОСОБ ОЧИСТКИ ПОВЕРХНОСТИ ВОДЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ 1995
  • Глумов И.Ф.
  • Вагизов Н.Г.
  • Кубарев Н.П.
  • Шатохин В.В.
  • Салихов Р.Ш.
  • Вотинцева Е.Ф.
  • Рощектаева Н.А.
RU2114064C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ НЕФТЕМАСЛОСОДЕРЖАЩЕГО ОТХОДА 1998
  • Сатаев А.С.
  • Тагиров К.М.
  • Гасумов Рамиз Алиджавад Оглы
  • Долгопятова Н.Г.
RU2154617C2
Кран машиниста для пневматических тормозов 1933
  • Фридрих Гильдебранд
SU50167A1

RU 2 259 874 C2

Авторы

Гафаров И.Г.

Мухаметзянов М.Т.

Расторгуев Ю.И.

Тимофеев В.С.

Тёмкин О.Н.

Даты

2005-09-10Публикация

2003-09-18Подача