СПОСОБ МАСС-СПЕКТРОМЕТРИЧЕСКОГО ИЗОТОПНОГО АНАЛИЗА Российский патент 2006 года по МПК G01N21/64 

Описание патента на изобретение RU2267773C2

Предлагаемое изобретение относится к области измерительной техники и может быть использовано при исследовании биохимических процессов для определения изотопного состава углерода.

Известен способ измерения изотопного состава анализируемых веществ, включающий подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждой из компонентов по полученным масс-спектрам (патент РФ №2181197, МПК G 01 N 21/64, публикация БИ №10/2002 г., от 10.04.02. г.). Образцы для анализа берутся обычно в виде чистого углерода или его простых соединений: СО, CO2, при этом измерения изотопного состава углерода, как правило, не отличаются высокой точностью.

К недостаткам аналога относится недостаточно высокие чувствительность и точность определения изотопного состава анализируемого вещества для случая присутствия в анализируемых пробах значительного множества различных изотопов.

Известен в качестве наиболее близкого к заявляемому по технической сущности способ масс-спектрометрического изотопного анализа, включающий подготовку проб, регистрацию масс-спектров анализируемых веществ и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам этих элементов (заявка РФ №2000117927, МПК G 01 N 23/00, публ. БИ №17/02 от 20.06.02 г.).

Однако использование известного способа не позволяет проводить измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах при достаточно высокой чувствительности и сравнительно невысоких погрешностях измерений.

Задачей авторов предлагаемого изобретения является разработка способа масс-спектрометрического изотопного анализа, обеспечивающего возможность измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах, повышение точности за счет уменьшения погрешности измерений.

Новый технический результат, достигаемый при использовании предлагаемого способа, заключается в обеспечении возможности измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах, в повышении чувствительности и в уменьшении погрешности измерений.

Указанные задача и новый технический результат достигаются тем, что в известном способе масс-спектрометрического изотопного анализа веществ, включающем подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам, в соответствии с предлагаемым способом подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам 1÷4, полученным из закона биномиального распределения, рассчитывают распространенность изотопа 13С:

где С0, C1, С2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн.ед.

Сущность предлагаемого способа поясняется следующим образом.

Первоначально проводят подготовку проб - получение молекул фуллеренов.

Пробы для анализа подготавливают в виде растворов фуллеренов, которые посредством микропипетки наносят на ионизатор твердофазного источника ионов (ИИ). Пробы готовят путем преобразования углерода в фуллереновые молекулы, в составе которых в качестве образцов для анализа используют фуллереновые углеродные образования С60, C70 и т.п.

Подготовленные пробы направляют на этап измерений, который осуществляют на масс-спектрометре, где анализируют статистически необходимое количество проб.

При регистрации характеристических молекулярных масс-спектров в пробах на основе образцов фуллеренов измеряют отношения интенсивностей изотопных пиков.

Интенсивность каждого изотопного массового пика в характеристическом молекулярном масс-спектре фуллерена соответствует вероятности его образования, которая может быть рассчитана по закону биномиального распределения. В условиях предлагаемого способа с учетом результатов экспериментов были получены математические зависимости (1-4) для расчета величин распространенности р изотопа 13С.

Измерения отношений пиков в характеристических масс-спектрах фуллеренов проводят на масс-спектрометре в режиме термоэмиссии отрицательных ионов. Функциональная схема автоматизированного масс-спектрометра МИ 1201 приведена на фиг.1, где ИИ - источник ионов, МА - магнитный анализатор, Д - детектор ионов, ГЦР - генератор цифровой развертки, ПНЧ - преобразователь напряжения в частоту, PC - персональный компьютер.

В ИИ осуществляется загрузка анализируемой пробы фуллеренов в количестве порядка единиц мкг. Измерения отношений пиков в характеристических масс-спектрах фуллеренов проводят на масс-спектрометре с использованием твердофазного источника ионов в режиме термоэмиссии отрицательных ионов.

Наглядно масс-спектр молекулы фуллерена С60, зарегистрированный в режиме сканирования, приведен на фиг.2, где массовые пики 721, 722, 723, и т.д. обусловлены наличием в составе молекулы соответственно одного, двух, трех и т.д. атомов изотопа 13С.

В ходе масс-спектрометрических измерений в режиме дискретной развертки регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов.

Использование твердофазного источника ионов в режиме термоэмиссии отрицательных ионов необходимо для обеспечения получения ионного пучка фуллеренов без разрушения их молекулярной структуры. При работе с положительными ионами фуллеренов получить интенсивные ионные токи без разрушения молекулярной структуры фуллеренов проблематично.

Расчет распространенности (изотопного состава каждого из элементов) производят по математическим формулам (1-4) биномиального распределения множества значений измеряемых величин:

где С0, C1, С2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2 и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.

Результаты расчетов приведены в таблице.

В прототипе расчет изотопного состава углерода произведен по традиционно применяемым математическим формулам для каждого из искомых компонентов, что становится неразрешимым при решении проблемы определения значительного множества разновидностей изотопов.

Используемые в предлагаемом способе математические формулы (1-4) позволяют рассчитывать распространенность изотопа 13С в смесях фуллеренов с произвольным содержанием изотопов углерода.

Т.о. при использовании предлагаемого способа анализа изотопного состава элементов обеспечивается возможность измерения изотопного состава углерода и его вариации в том числе и в фуллеренах при более высоких чувствительности и точности, чем это обеспечено в прототипе.

Возможность применения предлагаемого способа подтверждается следующим примером.

Пример

Предлагаемый способ был опробован в лабораторных условиях на приборе МИ 1201 с использованием твердофазного источника ионов в режиме термоэмиссии отрицательных ионов, на котором были проведены измерения отношений пиков в характеристических масс-спектрах проб фуллеренов С60 и C70, полученных из разных источников.

Результаты измерений отношений пиков в масс-спектрах фуллеренов, а также расчетов по ним распространенности изотопа 13С представлены в таблице.

Расчет распространенности р изотопа 13С проводился по формулам:

где С0, C1, C2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.

Следует отметить, что полученный данным способом результат измерения распространенности изотопа углерода 13С (1,0672±0,003)% находится в полном согласии с известными [например,IUPAC, Pure and Applied Chemistry 70, 217-235, 1998] справочными данными и имеет малую погрешность (относительное среднее квадратичное отклонение ОСКО=0,3%), что говорит о более высокой точности его по сравнению с прототипом.

В состав измерительного комплекса входят масс-спектрометр типа МИ 1201, и система автоматической регистрации масс-спектров (БПР-1 - блок программной регистрации).

Т.о. экспериментальное исследование предлагаемого способа анализа изотопного состава углерода подтвердило возможность измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах и повышение точности и чувствительности определения распространенности изотопа углерода 13С по сравнению с прототипом.

Таблица
Результаты измерений отношений пиков в масс-спектрах фуллеренов С60 и С70. и расчетов распространенности изотопа углерода 13С.
МолекулыИзмеряемые отношения молекулярных пиковРезультаты измерений, отн.ед.Распространенность изотопа 13С, отн.ед. (расчетные значения)С6013C112C59/12C600.65230.0107513C212C58/12C600.20480.0106413C312C57/12C600.04280.0106713C412C56/12C600.00660.01067С7013C112C69/12C700.75540.0106813C212C68/12C700.28140.0106813C312C67/12C700.06900.01069Среднее значение распространенности изотопа 13С, отн.ед.0.01067СКО, отн.ед.0,00003ОСКО,%0.3

Похожие патенты RU2267773C2

название год авторы номер документа
СПОСОБ МАСС-СПЕКТРОМЕТРИЧЕСКОГО АНАЛИЗА РАЗЛИЧНЫХ ХИМИЧЕСКИХ СОЕДИНЕНИЙ 2005
  • Чубаров Юрий Иванович
  • Понькин Николай Александрович
RU2321850C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИСХОЖДЕНИЯ ЭТАНОЛА В АЛКОГОЛЬНОЙ ПРОДУКЦИИ 2017
  • Оганесянц Лев Арсенович
  • Панасюк Александр Львович
  • Кузьмина Елена Ивановна
  • Шилкин Алексей Александрович
RU2661606C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗОТОПНОГО СОСТАВА МЕТАНА 2010
  • Макась Алексей Леонидович
  • Кудрявцев Андрей Сергеевич
  • Трошков Михаил Львович
RU2461909C2
Способ идентификации меда на основе изотопной масс-спектрометрии 2022
  • Оганесянц Лев Арсенович
  • Панасюк Александр Львович
  • Кузьмина Елена Ивановна
  • Свиридов Дмитрий Александрович
  • Ганин Михаил Юрьевич
RU2809285C1
СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНОВ ТВЕРДОФАЗНЫМ СИНТЕЗОМ 2006
  • Вишневская Ирина Андреевна
  • Иванникова Елена Михайловна
  • Колбанёв Игорь Владимирович
  • Лобарев Алексей Валентинович
  • Систер Владимир Григорьевич
RU2331579C2
СПОСОБ ИДЕНТИФИКАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ МЕТОДА ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ И МАСС-СПЕКТРОМЕТРИИ 2011
  • Полякова Галина Юрьевна
  • Каземирова Марина Александровна
  • Арабская Марина Александровна
  • Повалихин Анатолий Павлович
  • Лоскутов Анатолий Юрьевич
  • Фоменко Павел Викторович
  • Копнев Дмитрий Евгеньевич
RU2469314C2
СПОСОБ ОПРЕДЕЛЕНИЯ САХАРА НЕВИНОГРАДНОГО ПРОИСХОЖДЕНИЯ В ВИНОГРАДНОМ ВИНЕ ИЛИ ВИНОМАТЕРИАЛЕ 2009
  • Оганесянц Лев Арсенович
  • Панасюк Александр Львович
  • Зякун Анатолий Маркович
  • Кузьмина Елена Ивановна
  • Харламова Лариса Николаевна
  • Шилкин Алексей Александрович
  • Баскунов Борис Петрович
RU2410684C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИСХОЖДЕНИЯ ВИННОЙ КИСЛОТЫ В ВИНАХ И СОКОСОДЕРЖАЩИХ НАПИТКАХ 2012
  • Оганесянц Лев Арсенович
  • Панасюк Александр Львович
  • Зякун Анатолий Маркович
  • Кузьмина Елена Ивановна
  • Баскунов Борис Петрович
  • Шилкин Алексей Александрович
RU2484459C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИСХОЖДЕНИЯ ЭТАНОЛА В НАТУРАЛЬНОМ ВИНОГРАДНОМ ВИНЕ ИЛИ ВИНОМАТЕРИАЛЕ 2009
  • Оганесянц Лев Арсенович
  • Панасюк Александр Львович
  • Зякун Анатолий Маркович
  • Кузьмина Елена Ивановна
  • Харламова Лариса Николаевна
  • Жирова Вера Владимировна
  • Шилкин Алексей Александрович
  • Захарченко Владимир Николаевич
RU2410683C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗОТОПНОГО СОСТАВА БОРСОДЕРЖАЩИХ МАТЕРИАЛОВ 2023
  • Оленин Александр Михайлович
  • Аушев Александр Анатольевич
  • Костылев Игорь Владимирович
  • Костылева Алла Анатольевна
  • Сысоева Татьяна Игоревна
  • Щедрина Евгения Васильевна
  • Осипова Наталья Игоревна
RU2803251C1

Иллюстрации к изобретению RU 2 267 773 C2

Реферат патента 2006 года СПОСОБ МАСС-СПЕКТРОМЕТРИЧЕСКОГО ИЗОТОПНОГО АНАЛИЗА

Использование: область измерительной техники. Способ включает подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ. Подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам биномиального распределения множества значений измеряемых величин рассчитывают распространенность изотопа 13С. Технический результат - повышение чувствительности измерений. 1 табл., 2 ил.

Формула изобретения RU 2 267 773 C2

Способ масс-спектрометрического изотопного анализа веществ, включающий подготовку проб, регистрацию масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам, в соответствии с предлагаемым способом подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода или его простых соединений СО, CO2 в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам 1-4 биномиального распределения множества значений измеряемых величин рассчитывают распространенность изотопа 13С:

где С0, C1, С2, и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.

Документы, цитированные в отчете о поиске Патент 2006 года RU2267773C2

RU 2000117927 A, 20.06.2002.SU 1190427 А, 07.11.1985.US 5597548 A , 28.01.1997.WO 98/40722 A2, 17.09.1998.

RU 2 267 773 C2

Авторы

Чубаров Юрий Иванович

Крыжановский Алексей Александрович

Понькин Николай Александрович

Тарасова Наталия Николаевна

Даты

2006-01-10Публикация

2004-02-24Подача