СПОСОБ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ Российский патент 2006 года по МПК C23C4/12 

Описание патента на изобретение RU2269590C2

Изобретение относится к напылению защитных покрытий, используемых в электротехнической промышленности, в частности в электромонтажном производстве, в приборостроении и в машиностроении.

Наиболее близким аналогом изобретения является способ нанесения защитного покрытия, описанный в авторском свидетельстве СССР № 1063859 А, опубликованном 30.12.1983 г. Способ включает подогрев изделия, выполненного из стали, нанесение покрытия газопламенным напылением и последующий отжиг при температуре 500-680°С. Перед напылением проводят подготовительные операции, в частности осуществляют пескоструйную очистку поверхности подложки.

К недостаткам известного изобретения относятся малые технологические возможности способа.

Задачей нового технического решения является повышение технологических возможностей способа газопламенного нанесения покрытия.

Техническим результатом изобретения является повышение адгезионной способности покрытия. Кроме того, при осуществлении способа добиваются повышения электродиффузионных свойств полученного покрытия, используемого в условиях электрофизического и электролитического износа при взаимодействии с блуждающими токами и наведенными потоками энергии, а также при взаимодействии с влажной средой.

Для повышения адгезионной способности покрытия по отношению к металлической подложке под площадками зон газопламенного напыления создают реверсивное магнитное поле, от свойств которого зависит скорость укладки осаждающихся и распределяемых магнитным полем частиц и переменная высота сетчатых слоев их залегания в покрытии.

Поставленная задача решается следующим образом.

Предложен способ газопламенного напыления защитного покрытия, включающий подготовительные операции и процесс газопламенного напыления порошкообразных компонентов в режиме управляемого потока витающих расплавленных частиц, направляемых горячим газовым потоком на подогретую подложку. Подложкой для нанесения покрытия являются локальные площадки поверхности изделия.

Подготовительные операции включают механическую и электролитическую очистку приповерхностного слоя подложки и разогрев локальных площадок зон газопламенного напыления до 250-420°С.

При напылении концентрированный поток порошкообразных компонентов направляют под острым углом "α" к подложке.

Порошкообразные компоненты наносимого покрытия включают алюминиевую пудру с компонентами других металлов для образования слоя покрытия, включающего интерметаллидную фазу в виде компоненты Ni3Al.

В процессе нанесения покрытия под площадками зон газопламенного напыления создают поворотное реверсивное магнитное поле, от свойств которого зависит скорость укладки осаждающихся и распределяемых магнитным полем витающих частиц, а также переменная высота сетчатых слоев их залегания в покрытии.

После завершения процесса нанесения покрытия охлаждение поверхности изделия проводят путем вылежки и/или путем принудительного подстуживания.

В частных случаях реализации заявленного способа защитное покрытие напыляют на алюминиевую подложку.

При напылении порошкообразные компоненты могут использовать в виде гранул с оболочкой из никеля, содержащих алюминий.

Защитное покрытие могут напылять на различные изделия, например на контактные поверхности лотков, на шинопроводы и на различные фасонные профили. При этом добиваются повышения электродиффузионных свойств покрытия, используемого в условиях электрофизического и электролитического износа при взаимодействии изделия с покрытием с блуждающими токами и наведенными потоками энергии и/или во влажной среде.

Пример выполнения способа.

Способ газопламенного напыления защитного покрытия включает как подготовительные операции, так и процесс газопламенного напыления.

При осуществлении способа подготовительные операции перед напылением покрытия выполняли в объеме, включающем механическую и электролитическую очистку приповерхностного слоя подложки с последующим разогревом зоны газопламенного напыления до 250-420°С.

Процесс газопламенного напыления порошкообразных компонентов осуществляли в режиме формирования управляемого потока витающих расплавленных частиц, направляемых горячим газовым потоком на подогретую подложку.

При реализации заявленного способа напыление можно производить не на всю поверхность изделия, а на локальные площадки поверхности изделия.

При напылении концентрированный поток порошкообразных компонентов направляли под острым углом "α" к подложке, выполненной из алюминия.

Порошкообразные компоненты наносимого покрытия использовали как в виде алюминиевой пудры, смешанной с компонентами других металлов для образования интерметаллидной фазы Ni3Al, так и в виде алюминиевых гранул с оболочкой из никеля.

Полученное покрытие содержало интерметаллидную фазу Ni3Al, расположенную в поверхностном слое с твердостью 1800-2300 МПа, при том, что твердость основного металла подложки составляла 500-700 МПа. Приграничная переходная зона от поверхности изделия к слою покрытия имела диффузионный характер, обусловленный внедрением раскаленных частиц компоненты Ni3Al, осажденных в виде криволинейно и накрестлежащих вытянутых каплевидных следов, видимых на макрометрическом уровне, образующих термодинамическую подложку под основным слоем покрытия компоненты Ni3Al.

В процессе нанесения покрытия под площадками зон газопламенного напыления создавали поворотное реверсивное магнитное поле, поскольку скорость укладки осаждающихся и распределяемых магнитным полем витающих частиц и толщина сетчатых слоев их залегания в покрытии зависят от свойств магнитного поля.

После завершения процесса нанесения покрытия охлаждение поверхности изделия проводили путем его принудительного подстуживания.

Защитное покрытие напыляли на контактные поверхности лотков и на шинопроводы. Исследование качества полученных изделий показало, что произошло изменение привычной картины срезов покрытия.

Предложенный способ является многофункциональным и открывает новые возможности по повышению прочности адгезионной связи поверхности изделия и слоя покрытия. Свойства полученного покрытия позволяют использовать его не только в электротехнической промышленности, но и в нефтяной и газовой промышленности, например, при изготовлении лопаток турбин, используемых при перекачке нефти и газа.

Похожие патенты RU2269590C2

название год авторы номер документа
Способ лазерной наплавки покрытий на образец и устройство для его осуществления 2017
  • Гильмутдинов Альберт Харисович
  • Горунов Андрей Игоревич
RU2656906C1
СПОСОБ ОЦЕНКИ КАЧЕСТВА НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ 2005
  • Шаров Игорь Федорович
RU2283487C1
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ ИЗДЕЛИЯ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2015
  • Гильмутдинов Альберт Харисович
  • Горунов Андрей Игоревич
RU2618287C2
СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ АЛЮМИНИДА ЖЕЛЕЗА НА ПОВЕРХНОСТЬ ИЗДЕЛИЙ, РАБОТАЮЩИХ В УСЛОВИЯХ ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ КОРРОЗИИ 2021
  • Балин Александр Николаевич
  • Вишневский Анатолий Адольфович
  • Невежин Станислав Владимирович
  • Герасимов Андрей Сергеевич
  • Кашфуллин Артур Миннахматович
RU2772342C1
Способ формирования интерметаллидных покрытий системы Ti-Al на поверхностях из алюминиевых сплавов 2017
  • Федоров Сергей Вольдемарович
  • Мин Хтет Со
RU2705819C2
Способ получения функционально-градиентных покрытий на металлических изделиях 2021
  • Хорев Александр Васильевич
  • Фот Максим Геннадьевич
  • Геращенков Дмитрий Анатольевич
  • Марков Михаил Александрович
  • Пантелеев Игорь Борисович
  • Олонцев Егор Олегович
RU2763698C1
Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах 2018
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Улин Игорь Всеволодович
  • Геращенков Дмитрий Анатольевич
  • Кузнецов Павел Алексеевич
  • Васильев Алексей Филиппович
  • Быкова Алина Дмитриевна
RU2678045C1
СПОСОБ ЭЛЕКТРОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ПОРОШКОВЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Артамонов Александр Сергеевич
  • Артамонов Евгений Александрович
RU2387737C2
Способ получения покрытий с интерметаллидной структурой 2018
  • Геращенков Дмитрий Анатольевич
  • Геращенкова Елена Юрьевна
  • Макаров Александр Михайлович
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
RU2701612C1
Способ получения интерметаллических покрытий с использованием механохимического синтеза и последующей лазерной обработки 2018
  • Задорожный Владислав Юрьевич
  • Калюшкин Сергей Дмитриевич
  • Павлов Михаил Дмитриевич
RU2677575C1

Реферат патента 2006 года СПОСОБ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ

Изобретение относится к напылению защитных покрытий, используемых, в частности, в электротехнической промышленности. Способ нанесения защитного покрытия включает подготовительные операции и процесс газопламенного напыления. При этом подложкой для нанесения покрытия являются локальные площадки поверхности изделия. Подготовительные операции включают механическую и электролитическую очистку приповерхностного слоя подложки и разогрев локальных площадок до 250-420°С. При напылении поток порошкообразных компонентов направляют под острым углом к подложке. Порошкообразные компоненты включают алюминиевую пудру для образования слоя покрытия, включающего фазу Ni3Al. Под площадками газопламенного напыления создают поворотное реверсивное магнитное поле, от свойств которого зависит скорость укладки осаждающихся и распределяемых магнитным полем частиц и высота залегания сетчатых слоев в покрытии. Техническим результатом изобретения является повышение адгезионной способности покрытия. 3 з.п. ф-лы.

Формула изобретения RU 2 269 590 C2

1. Способ газопламенного напыления защитного покрытия, включающий подготовительные операции и процесс газопламенного напыления порошкообразных компонентов в режиме управляемого потока витающих расплавленных частиц, направляемых горячим газовым потоком на подогретую подложку, отличающийся тем, что подложкой для нанесения покрытия являются локальные площадки поверхности изделия, подготовительные операции включают механическую и электролитическую очистку приповерхностного слоя подложки и разогрев локальных площадок зон газопламенного напыления до 250-420°С, при напылении концентрированный поток порошкообразных компонентов направляют под острым углом к подложке, порошкообразные компоненты включают алюминиевую пудру с компонентами металлов для образования слоя покрытия, включающего интерметаллидную фазу в виде компоненты Ni3AL, под площадками зон газопламенного напыления создают поворотное реверсивное магнитное поле, от свойств которого зависит скорость укладки осаждающихся и распределяемых магнитным полем витающих частиц и переменная высота сетчатых слоев их залегания в покрытии, охлаждение поверхности изделия проводят в процессе вылежки и/или принудительного подстуживания.2. Способ по п.1, отличающийся тем, что защитное покрытие напыляют на алюминиевую подложку.3. Способ по п.1, отличающийся тем, что проводят напыление порошкообразных компонентов в виде гранул с оболочкой из никеля, содержащих алюминий.4. Способ по п.1, отличающийся тем, что защитное покрытие напыляют на контактные поверхности лотков, шинопроводов и различных фасонных профилей, при этом добиваются повышения электродиффузионных свойств полученного покрытия, используемого при электрофизическом и электролитическом износе при взаимодействии с блуждающими токами и наведенными потоками энергии и/или влажной средой.

Документы, цитированные в отчете о поиске Патент 2006 года RU2269590C2

Способ нанесения покрытий на стальные изделия 1982
  • Ивашко Виктор Сергеевич
  • Генин Ефим Павлович
  • Бродко Василий Вячеславович
  • Гафо Юрий Натанович
SU1063859A1
Сферодвижный механизм 1978
  • Кривда Леонид Трофимович
  • Пшенишнюк Александр Сидорович
SU721186A1
Способ получения покрытий 1989
  • Ахматов Валерий Иванович
  • Гриц Евгений Филиппович
SU1742352A1
Способ восстановления изношенных деталей путем напыления металла на поверхность нагретой детали 1951
  • Кононов А.М.
SU111547A1
0
SU80841A1
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1

RU 2 269 590 C2

Авторы

Шаров Игорь Федорович

Бушманов Алексей Михайлович

Даты

2006-02-10Публикация

2003-11-11Подача