ПОДШИПНИК СКОЛЬЖЕНИЯ Российский патент 2006 года по МПК F16C17/14 F16C33/04 

Описание патента на изобретение RU2269683C1

Заявляемое изобретение относится к машиностроению, а именно к подшипникам скольжения, и может найти применение при изготовлении опор гребных валов судовых валопроводов.

При эксплуатации подшипников скольжения - опор гребных валов - основными показателями являются высокая несущая способность и высокая износостойкость, стабильность размеров при работе в воде и связанная с этими показателями долговечность(ресурс).

В машиностроении широко применяется подшипник скольжения, включающий заключенную в металлический корпус цельную втулку из полиамида (капролона) [Сягаева С.И. Литье капролона - Л. Машиностроение, 1980 г.]. Подшипник с втулкой из полиамида имеет сравнительно низкую несущую способность, обусловленную сравнительно низкой прочностью полиамида (разрушающее напряжение при сжатии порядка 60-70 МПа). Полиамид набухает в воде, что может привести и приводит к заклиниванию вала. Водопоглощение полиамида увеличивается в теплой воде, что не позволяет использовать такие подшипники в теплых морях, и химически нестоек.

Наиболее близким по совокупности существенных признаков к заявляемому и принятый за прототип является подшипник скольжения, включающий вкладыш (наборную втулку), собранный в металлическом корпусе из отдельных силовых слоистых сегментов и размещенных между ними, твердосмазочных сегментов, обработанных по внутреннему диаметру в один размер [патент РФ №2112159, М.кл6 F 16 C 17/14, опубл. 27.05.1998]. В конкретном примере исполнения, приведенном в патенте, втулка подшипника скольжения диаметром 550 мм собрана из силовых слоистых сегментов, изготовленных из фенольного антифрикционного углепластика марки ФУТ, и твердосмазочных сегментов, изготовленных из наполненного сополимера политетрафторэтилена (фторопласта) марки Ф40Г40. Наборный вкладыш (втулка) заключен в толстостенный металлический корпус. Слои силовых слоистых сегментов расположены перпендикулярно оси подшипника.

При вращении вала частицы твердосмазочных элементов переносятся на слоистые сегменты, на поверхности которых образуется мягкая пленка фторопласта, обладающая высокими антифрикционными свойствами. Подшипник работает с водой как смазывающе-охлаждающей жидкостью.

Указанный подшипник скольжения имеет ресурс и несущую способность в два раза выше, чем подшипник с полиамидной втулкой. За счет толстостенного металлического корпуса габариты подшипника велики. Кроме того, сборка втулки из сегментов может выполняться только вручную и требует привлечения высококвалифицированного персонала. Изготовление подшипника скольжения диаметром 200 мм и меньше с наборной втулкой из отдельных сегментов по прототипу представляет трудновыполнимую техническую задачу. Таким образом, указанный подшипник имеет повышенные массогабаритные характеристики и недостаточно технологичен при изготовлении.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении технологичности изготовления и снижении массогабаритных характеристик подшипника скольжения.

Технический результат достигается за счет того, что в подшипнике скольжения, включающем силовые слоистые и твердосмазочные элементы, обработанные по внутреннему диаметру в один размер, согласно изобретению силовые слоистые элементы выполнены в форме цельной цилиндрической втулки, имеющей на внутренней поверхности продольные пазы, а твердосмазочные элементы, имеющие трапецеидальную форму, размещены и неподвижно закреплены с помощью заливочной композиции в пазах цельной втулки, причем продольные пазы могут быть выполнены на части внутренней поверхности втулки в самой нагруженной части подшипника скольжения.

Втулка выполнена из силового слоистого материала, включающего армирующую ткань из углеродного волокна со средним размером кристаллитов по базисной плоскости 3,0-6,0 нм и толщиной пакета базисных плоскостей 1,0-4,0 нм и полимерное термореактивное связующее - эпоксидную или фенолформальдегидную смолу. Этот материал способен нести нагрузку от веса вала, имеет высокие прочностные показатели, нулевое объемное водопоглощение и высокую устойчивость формы при работе в воде. В силу этого слои указанного силового слоистого материала могут быть расположены параллельно поверхности вала, что значительно упрощает изготовление втулки.

Цельная втулка, выполненная из указанного материала, не нуждается в массивном металлическом корпусе; возможно изготовление подшипника по заявляемому изобретению с металлическим корпусом толщиной 2-3 мм;

Твердосмазочные элементы выполнены из наполненного сополимера политетрафторэтилена (ПТФЭ), например из композиций сополимера тетрафторэтилена с этиленом (сополимер ТФЭ-Э марки Ф-40) с такими наполнителями, как сажа, графит, кокс, углеродные волокна, оксиды металлов и т.п., преимущественно из сополимера ТФЭ-Э, наполненного графитом, например марок Ф40Г40 или Ф40Г20.

На внутренней поверхности втулки дополнительно выполнены продольные пазы для подвода смазывающей охлаждающей жидкости.

Заявляемый подшипник скольжения представлен на фиг.1-3.

На фиг.1 - 3 представлен вид заявляемого подшипника с дополнительным продольными пазами для подвода смазывающей охлаждающей жидкости.

1 - втулка подшипника;

2 - продольные пазы для твердосмазочных элементов;

3 - твердосмазочные элементы трапецеидальной формы;

5 - продольные пазы для подвода смазывающей охлаждающей жидкости.

На фиг.2 представлен вид торца отрезка втулки с одним твердосмазочным элементом.

1 - втулка подшипника;

2 - продольный паз для твердосмазочного элемента;

3 - твердосмазочный элемент трапецеидальной формы;

4 - заливочная композиция.

Пазы 2 с твердосмазочными элементами 3 выполнены только на нижней части втулки 1 подшипника скольжения, под валом.

Заявляемый подшипник скольжения может быть изготовлен длиной до 1 метра и диаметром от 50 до 800 мм.

Подшипник работает следующим образом: цельная втулка из силового слоистого материала (1) несет нагрузку от веса вала и обеспечивает требуемую высокую износостойкость подшипника. При вращении вала частицы твердосмазочных элементов (3) из наполненного сополимера политетрафторэтилена переносятся на поверхность цельной втулки с образованием мягкой пленки, способствующей дополнительному снижению коэффициента трения. Подшипник работает с водой как смазывающе-охлаждающей жидкостью, которая подается по дополнительным продольным пазам (5).

Технический эффект от использования изобретения заключается в снижении массогабаритных характеристик и трудоемкости изготовления подшипника.

Похожие патенты RU2269683C1

название год авторы номер документа
Подшипниковый узел опор гребных валов судовых валопроводов 2022
  • Дидов Владимир Викторович
RU2785392C1
Подшипниковый узел опор гребных валов судовых валопроводов 2022
  • Дидов Владимир Викторович
RU2785377C1
АНТИФРИКЦИОННАЯ НАПОЛНЕННАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2008
  • Анисимов Андрей Валентинович
  • Бахарева Виктория Ефимовна
  • Лобынцева Ирина Владимировна
  • Савелов Александр Сергеевич
  • Пеклер Константин Владимирович
  • Демьянов Владимир Александрович
  • Ильин Сергей Яковлевич
  • Моркин Олег Васильевич
  • Цыганков Светослав Андреевич
RU2394850C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВКЛАДЫША ПОДШИПНИКА 2010
  • Анисимов Андрей Валентинович
  • Бахарева Виктория Ефимовна
  • Лобынцева Ирина Владимировна
  • Савёлов Александр Сергеевич
  • Пеклер Константин Владимирович
  • Демьянов Владимир Александрович
  • Ильин Сергей Яковлевич
  • Моркин Олег Васильевич
RU2462625C2
ПОДШИПНИК СКОЛЬЖЕНИЯ 1994
  • Степанов Б.П.
  • Арефьев А.А.
  • Бураков В.Н.
  • Шмелев С.А.
  • Шумов А.Н.
RU2112159C1
ПОДШИПНИК СКОЛЬЖЕНИЯ 2015
  • Шумов Александр Николаевич
  • Константинов Лев Николаевич
  • Ухов Андрей Николаевич
  • Булин Сергей Леонидович
  • Сундеткалиев Игорь Хайрлевич
  • Хабаров Антон Анатольевич
  • Тарасова Анастасия Валерьевна
  • Степанов Борис Павлович
RU2598121C2
АНТИФРИКЦИОННАЯ НАПОЛНЕННАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2000
  • Абозин И.Ю.
  • Бахарева В.Е.
  • Казаков М.Е.
  • Лобынцева И.В.
  • Мараховская М.Л.
  • Николаев Г.И.
  • Панфилов Н.А.
  • Петрова Л.В.
  • Симина В.Н.
RU2181128C1
Антифрикционная композиция 2022
  • Маланюк Артем Игоревич
  • Махортов Андрей Дмитриевич
RU2780264C1
АНТИФРИКЦИОННАЯ КОМПОЗИЦИЯ 2005
  • Анисимов Андрей Валентинович
  • Бахарева Виктория Ефимовна
  • Блышко Ирина Валентиновна
  • Николаев Герман Иванович
  • Петрова Людмила Викторовна
  • Точильников Давид Гершевич
RU2295546C1
ПОДШИПНИК ГРЕБНОГО ВАЛА КРУПНОТОННАЖНЫХ МОРСКИХ СУДОВ 2008
  • Бабенко Анатолий Александрович
  • Григорьев Алексей Кузьмич
  • Дарбенян Олег Эдуардович
  • Жуковский Юрий Георгиевич
RU2385256C1

Иллюстрации к изобретению RU 2 269 683 C1

Реферат патента 2006 года ПОДШИПНИК СКОЛЬЖЕНИЯ

Изобретение относится к области машиностроения, а именно к подшипникам скольжения, и может найти применение при изготовлении опор гребных валов судовых валопроводов. Подшипник скольжения включает силовые слоистые и твердосмазочные элементы, обработанные по внутреннему диаметру в один размер, причем силовые слоистые элементы выполнены в форме цельной цилиндрической втулки, имеющей на части внутренней поверхности продольные пазы, в которых размещены и неподвижно закреплены с помощью заливочной композиции твердосмазочные элементы трапецеидальной формы. Втулка выполнена из слоистого материала, включающего армирующую ткань из углеродного волокна со средним размером кристаллитов по базисной плоскости 3,0-6,0 нм и толщиной пакета базисных плоскостей 1,0-4,0 нм и полимерное термореактивное связующее, например эпоксидную и фенолформальдегидную смолу, а твердосмазочные элементы выполнены из наполненного сополимера политетрафторэтилена. Технический результат - упрощение технологии, снижение массогабаритных характеристик и трудоемкости изготовления подшипника скольжения. 5 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 269 683 C1

1. Подшипник скольжения, включающий силовые слоистые и твердосмазочные элементы, обработанные по внутреннему диаметру в один размер, отличающийся тем, что силовые слоистые элементы выполнены в форме цельной цилиндрической втулки, имеющей на внутренней поверхности продольные пазы, а твердосмазочные элементы, имеющие трапецеидальную форму, размещены и неподвижно закреплены в пазах цельной втулки, при этом втулка выполнена из слоистого материала, включающего армирующую ткань из углеродного волокна со средним размером кристаллитов по базисной плоскости 3,0-6,0 нм и толщиной пакета базисных плоскостей 1,0-4,0 нм и полимерное термореактивное связующее, например эпоксидную и фенолформальдегидную смолу, а твердосмазочные элементы выполнены из наполненного сополимера политетрафторэтилена.2. Подшипник скольжения по п.1, отличающийся тем, что в качестве наполненного сополимера политетрафторэтилена использован сополимер ТФЭ-Э марки Ф-40 с такими наполнителями, как сажа, графит, кокс, углеродные волокна, оксиды металлов например, марок Ф40Г40 или Ф40Г20.3. Подшипник скольжения по п.1, отличающийся тем, что твердосмазочные элементы размещены во всех продольных пазах, выполненных на внутренней поверхности втулки.4. Подшипник скольжения по п.1, отличающийся тем, что твердосмазочные элементы размещены в части продольных пазов, выполненных на внутренней поверхности втулки.5. Подшипник скольжения по п.1, отличающийся тем, что твердосмазочные элементы неподвижно закреплены в продольных пазах втулки с помощью заливочной композиции.6. Подшипник скольжения по п.1, отличающийся тем, что продольные пазы выполнены на части внутренней поверхности втулки в самой нагруженной области подшипника скольжения.

Документы, цитированные в отчете о поиске Патент 2006 года RU2269683C1

ПОДШИПНИК СКОЛЬЖЕНИЯ 1994
  • Степанов Б.П.
  • Арефьев А.А.
  • Бураков В.Н.
  • Шмелев С.А.
  • Шумов А.Н.
RU2112159C1
JP 2000120663 A, 25.04.2000
JP 8232959 A, 10.09.1996
АНТИФРИКЦИОННАЯ КОМПОЗИЦИЯ 2000
  • Рыбин В.В.
  • Пономарев А.Н.
  • Николаев Г.И.
  • Абозин И.Ю.
  • Бахарева В.Е.
  • Малинок М.В.
  • Никитин В.А.
  • Петров В.М.
RU2188834C2
Судовой опорный подшипник дейдвудного вала 1985
  • Кузовлев Юрий Митрофанович
  • Чалов Вячеслав Николаевич
  • Елизаров Виктор Николаевич
  • Смыков Александр Васильевич
SU1326799A1

RU 2 269 683 C1

Авторы

Абозин Игорь Юрьевич

Анисимов Андрей Валентинович

Бахарева Виктория Ефимовна

Лобынцева Ирина Владимировна

Николаев Герман Иванович

Петрова Людмила Викторовна

Чурикова Антонина Андреевна

Даты

2006-02-10Публикация

2004-08-12Подача