Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях.
Известен способ получения катализаторов конверсии метана путем модификации цеолита типа ZSM-5 ионами переходных металлов. Mo/ZSM-5 катализаторы получают пропиткой цеолита водными растворами гептамолибдата аммония ((КН4)6Мо7О24) с последующим высушиванием при комнатной температуре в течение 12 ч, высушиванием при 90-100°С в течение 8 ч и прокаливанием на воздухе при 500-750°С в течение 5-12 ч [Meriaudeau P., Tiep L.V., На V. Т.Т., Naccache С., Szabo G. Aromatization of methane over Mo/HZSM-5 catalysts: on the possible reaction intermediates // J. of Molecular Catal. A: Chem. 144 (1999), 469-471].
Другим способом получения Mo/ZSM-5 катализаторов является механическое смешение цеолита с солью молибдена (MoCl3) или с оксидом молибдена (MoCl3) с последующим прокаливанием при 500°С в течение 4-5 ч на воздухе [Chun-Lei Zhang, Shuang Li, Yi Yuan, Wen-Xiang Zhang, Tong-Hao Wu and Li-Wu Lin. Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites // Catal. Lett. 56(1998) 207-213. Young-Ho Kim, Richard W. Borry III, Enrique Iglesia Genesis of methane activation sites in Mo-exchanged H-ZSM-5 catalysts // Microporous and Mesoporous Materials 35-36 (2000) 495-509].
Наиболее близким к предлагаемому способу является способ получения Mo/ZSM-5 катализаторов путем механического смешения цеолита с солью Мо [Weckhuysen B.M., Wang D., Rosynek M.P., Lunsford J.H. Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites // J. Catal. 175 (1998), 338-346].
Недостатком этого способа является низкая конверсия метана (2,6%) при температуре 750°С и объемной скорости подачи метана 800 ч-1.
Задачей предлагаемого способа является получение катализатора, обеспечивающего повышение степени превращения метана и увеличение срока стабильного действия Mo/ZSM-5 катализаторов в процессе конверсии метана в ароматические углеводороды.
Технический результат достигается тем, что Mo/ZSM-5 катализаторы получают путем механического смешения цеолита H-ZSM-5 с мольным отношением SiO2/Al2O3=40 (М=40) и наноразмерного порошка (НРП) Мо, полученного методом электрического взрыва проволоки металла в среде аргона, с последующим прокаливанием при Т=500°С в течение 4 ч. В результате получают Mo/ZSM-5 катализаторы, содержащие от 0,5 до 6,0 мас.% нанопорошка Мо. НРП Мо имеет средний размер частиц 250-350 нм, удельную поверхность 1,88 м2/г. Каталитическая активность и стабильность полученных катализаторов выше, чем катализаторов, полученных методом пропитки и механическим смешением с МоО3, при одинаковых условиях проведения процесса.
Примеры конкретного выполнения
Пример 1. К 4,0 г декатионированного цеолита ZSM-5 (М=40) добавляют 0,16 г НРП Мо (4,0 мас.%), полученного методом электрического взрыва проволоки металла в среде аргона. Полученную смесь перемешивают в вибромельнице в течение 0,5 ч и прокаливают при 500°С в течение 4 ч. Затем катализатор прессуют в таблетки, крошат и отбирают фракцию 0,5-1 мм.
Каталитические испытания образцов проводят на проточной установке при температуре реакции 750°С, объемных скоростях подачи метана 500-1000 ч-1 и небольшом избыточном давлении. Катализатор объемом 1 мл помещают на специальную сетку в кварцевом реакторе диаметром 12 мм. Перед началом реакции превращения метана катализатор нагревают в токе гелия до 750°С и выдерживают при этой температуре в течение 20 мин. Метан перед подачей в реактор подвергают очистке от примесей путем пропускания через адсорбенты - активированный уголь и силикагель. Перед проведением эксперимента степень чистоты метана проверяют газохроматографическим анализом. Чистота метана составляет 100%. Пройдя слой катализатора, продукты реакции и непревращенный метан поступают в кран для отбора проб на анализ. Для предотвращения конденсации или прочной адсорбции образующихся высших углеводородов трубка на выходе из реактора и шестиходовой кран находятся при температуре выше 200°С. Анализ продуктов конверсии метана проводится через 60 мин работы катализатора методом газовой хроматографии. Степень конверсии метана при 500 ч-1 составляет 16,0%. Исследования времени стабильной работы катализатора показывают, что его активность сохраняется на уровне 14-15% в течение первых трех часов работы, после чего она начинает постепенно снижаться, и за время работы катализатора 6 ч уменьшается до 12%.
Пример 2. Так же как в примере 1, но содержание НРП Мо составляет 2,0% от веса цеолита. Степень конверсии метана при 500 ч-1 составляет 13,0%.
Пример 3. Так же как в примере 1, но содержание НРП Мо составляет 0,5% от веса цеолита. Степень конверсии метана при 500 ч-1 составляет 12,1%.
Пример 4. Так же как в примере 1, но содержание НРП Мо составляет 6,0% от веса цеолита. Степень конверсии метана при 500 ч-1 составляет 1,6%.
Пример 5. Так же как в примере 1, но объемная скорость подачи метана равна 1000 ч-1. Степень конверсии метана при 1000 ч-1 составляет 12,6%.
Пример 6. Так же как в примере 1, но мольное отношение SiO2/Al2O3=30. Степень конверсии метана при 1000 ч-1 составляет 10,7%.
Пример 7. Так же как в примере 1, но мольное отношение SiO2/Al2O3=80. Степень конверсии метана при 1000 ч-1 составляет 8,8%.
В таблице представлены сравнительные характеристики каталитической активности образцов Mo/ZSM-5, полученных путем модифицирования цеолита НРП Мо, и Mo/ZSM-5 катализатора, полученного путем модифицирования цеолита механическим смешением с оксидом молибдена (по прототипу).
Как видно из данных таблицы, предлагаемый способ позволяет получить катализатор, отличающийся от прототипа более высокой активностью в процессе конверсии метана в ароматические углеводороды.
название | год | авторы | номер документа |
---|---|---|---|
ЦЕОЛИТНЫЙ КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ НЕОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНА | 2006 |
|
RU2331476C2 |
ЦЕОЛИТНЫЙ КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ НЕОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНА | 2005 |
|
RU2296009C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ МЕТАНА, КАТАЛИЗАТОР, ПРИГОТОВЛЕННЫЙ ПО ЭТОМУ СПОСОБУ, И СПОСОБ ПОЛУЧЕНИЯ БЕНЗОЛА ИЗ МЕТАНА С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО КАТАЛИЗАТОРА | 2012 |
|
RU2508164C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ, КАТАЛИЗАТОР, ПРИГОТОВЛЕННЫЙ ПО ЭТОМУ СПОСОБУ, И СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО КАТАЛИЗАТОРА | 2012 |
|
RU2515511C1 |
ЦЕОЛИТНЫЙ КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ НЕОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНА | 2009 |
|
RU2408425C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС НЕОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНА | 2010 |
|
RU2438779C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА | 2010 |
|
RU2453366C1 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 2013 |
|
RU2523801C1 |
Катализатор гидродеоксигенации алифатических кислородсодержащих соединений и гидроизомеризации н-парафинов и способ его приготовления | 2015 |
|
RU2612303C1 |
СПОСОБ НЕОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНА | 2017 |
|
RU2655927C1 |
Изобретение может использоваться в нефтеперерабатывающей и химической промышленности для повышения эффективности процессов неокислительной конверсии метана за счет увеличения выхода целевого продукта, получаемого на Мо-содержащих цеолитных катализаторах. Способ получения молибденсодержащих цеолитных катализаторов включает модификацию цеолита молибденом в твердой фазе. Молибден в виде наноразмерного порошка, полученного методом электрического взрыва проводника в среде аргона, смешивают с цеолитом типа ZSM и прокаливают, при этом содержание молибдена в полученном катализаторе составляет 0,5-6,0 мас.%. Технический результат: высокая активность катализатора в процессе конверсии метана в ароматические углеводороды. 1 табл.
Способ получения молибденсодержащих цеолитных катализаторов неокислительной конверсии метана, включающий модификацию цеолита молибденом в твердой фазе, отличающийся тем, что молибден в виде наноразмерного порошка смешивают с цеолитом типа ZSM и прокаливают, при этом содержание молибдена в полученном катализаторе составляет 0,5-6,0 мас.%.
Bert M | |||
Weckhuysen, Dingjun Wang, Michael P | |||
Rosynek, Jack H | |||
Luns-ford | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Journal of Catalysis, 175(1998), p.338-346 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
US 4388224 А, 14.06.1983 | |||
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ НАФТАЛИНОВЫХ УГЛЕВОДОРОДОВ ИЗ ЛЕГКИХ УГЛЕВОДОРОДНЫХ ГАЗОВ (ВАРИАНТЫ) | 2003 |
|
RU2227793C1 |
RU 2003103214 А, 27.07.2004. |
Авторы
Даты
2006-03-20—Публикация
2004-08-16—Подача