Изобретение относится к области очистки сточных, природных, оборотных вод путем жидкофазного окисления соединений кислородом воздуха и может быть использовано при очистке и обеззараживании бытовых, промышленных, дождевых сточных вод, природных и оборотных вод.
Известен способ доочистки сточных вод путем фильтрации через фильтрующую композицию, состоящую из адсорбента-катализатора - активированного угля АГ-3 и поддерживающего слоя - кварцевого песка (А.Д.Смирнов, "Сорбционная очистка", 1982, стр.82-92).
Недостатком способа является низкая эффективность доочистки по взвешенным веществам - 90%, каталитическая активность окисления органических веществ не более 10%, обеззараживающая способность до 40%.
Кроме того, низкая механическая прочность активированного угля приводит к быстрой истираемости его поверхности, уносу и, как следствие этого, снижению активности угля и вторичному загрязнению очищаемой воды. Постоянная дозагрузка фильтра требует необоснованно высокого количества фильтрующей загрузки.
Одновременно в плоскости раздела слоев происходит заиливание загрузки, что приводит к снижению производительности процесса, уменьшению времени фильтроцикла.
Активный уголь обладает малой эффективностью в процессе обеззараживания воды. Появление антибактериального эффекта возможно только при использовании их в медленных фильтрах после завершения процесса созревания биологической пленки. Она образуется в верхних слоях фильтра из содержащихся в воде примесей, в том числе и микроорганизмов. При этом фильтр может удалять не только минеральные примеси, обусловливающие мутность, но и бактерии. Однако срыв пленки в период промывки фильтра и возможное вторичное загрязнение очищаемой воды, длительный период ее созревания резко снижают эффективность процесса обеззараживания с использованием таких видов загрузок.
Известен способ доочистки сточных вод путем фильтрации через фильтрующую композицию, состоящую из адсорбента-катализатора и поддерживающего слоя (RU 2108298, 1997).
Недостатком способа является невысокая эффективность доочистки: по металлам - 30-40%, по солесодержащим соединениям - 30%, органическим веществам не более 50%, обеззараживающая способность до 70-80%. Очистка по взвешенным веществам составляет 99,5%.
Для устранения указанных недостатков и обеспечения стабильно высокого обеззараживающего эффекта предлагается в качестве фильтрующей композиции использовать загрузку, состоящую из поддерживающего слоя (при необходимости) и адсорбента-катализатора, включающего активные компоненты - оксиды, гидроксиды и до 80% шпинелей металлов переменной валентности, модифицирующую добавку, в качестве которой используются органические основания - амины и/или гетерополикислоты, пластификатор - кремнийорганические соединения и минеральный носитель - глину, Al2О3, SiO2, при следующем содержании компонентов адсорбента-катализатора, массовая доля в %:
Предпочтительно содержание шпинелей в активном компоненте до 80%.
Адсорбент-катализатор используют в качестве верхнего слоя при загрузке фильтра и располагают над поддерживающим слоем.
Предлагаемый адсорбент-катализатор обладает высокой каталитической, обеззараживающей и задерживающей способностью, которые позволяют в течение 7 лет применять его для очистки водных сред без перегрузки фильтра. Так, при ХПК - 4,0-35,0 мгО/дм3, концентрации взвешенных веществ - 10,0-50,0 мг/дм3, железа - 1,35-7,0 мг/дм3, сульфатов - 12,5-92,0 мг/дм3, жесткости - 1,4-4,0 мг/дм3, исходной загрязненности по E.coli - 103-105 особ/дм3, эффективность очистки при времени фильтроцикла 52 часа составляет по ХПК 77-84%, по взвешенным веществам - 99,7%, по железу - 76-84%, по сульфатам - 56-61%, по жесткости - 44-50%, по E.coli - 99-100%.
Регенерация поверхности адсорбента-катализатора достигается за счет 10-минутной водовоздушной промывки с интенсивностью воздушной промывки 15-25 дм3/(м2с) и водной промывки 8,2-10 дм3/м2с.
Эффективным в адсорбционно-каталитическом процессе очистки вод оказалось применение адсорбентов-катализаторов шпинельного типа. Образование шпинели сопровождается увеличением активности образцов адсорбентов-катализаторов в окислительно-восстановительных процессах очистки водных сред.
Основными факторами, определяющими каталитическую активность шпинельных систем, является дефектность структуры, природа поверхности катализатора и природа шпинели в структуре катализатора.
Технология изготовления адсорбента-катализатора включает следующие стадии: подготовку исходных веществ - сушка и размол компонентов; смешение компонентов с дополнительным размолом, обеспечивающим необходимую структуру и фазовый состав; формовку гранул; сушку экструдатов и термическую обработку.
Эффективность технологии адсорбционно-каталитического обеззараживания обусловлена протеканием на поверхности катализатора взаимосвязанных адсорбционных и окислительно-восстановительных процессов при его одновременном бактерицидном действии.
Поверхность синтезированного керамического адсорбента-катализатора полифункциональна, и на ней одновременно могут присутствовать бескислородные и кислородсодержащие окислительные, а также восстановительные центры различной природы или силы. Эти центры уже при комнатной температуре могут ионизировать некоторые молекулы, которые легко сорбируются на активные центры гранулы адсорбент-катализатор с образованием ион-радикалов О•, О2 •, обеспечивающие цепной радикальный механизм.
Предлагаемый адсорбент-катализатор обладает определенной окислительной, адсорбционной и обеззараживающей способностью, обеспечивающей каталитическую активность и селективность, наблюдаемую вначале на поверхности адсорбента-катализатора, затем в объеме реакционной среды.
Синергический эффект каталитической активности катализатора и стабильность процесса очистки и обеззараживания с применением предлагаемого адсорбента-катализатора наблюдается при указанном соотношении компонентов, дальнейшее увеличение или уменьшение каждого каталитически активного компонента снижает каталитическую активность и стабильность данного процесса адсорбента-катализатора. Увеличение содержания каталитически активных компонентов приводит к созданию менее каталитически активной структуры, катализ происходит в мономолекулярном слое, непосредственно примыкающем к поверхности катализатора. Катализ тесно связан с адсорбцией кислорода и субстратов, которая является предварительной стадией катализа. При этом адсорбированные молекулы, особенно при наличии полярных групп, определенным образом ориентированы к поверхности. Если процесс адсорбции увеличивает скорость реакции, то возникающие поверхностные соединения должны характеризоваться повышенной окислительной способностью. Повышение окислительной способности связано с характером промежуточного взаимодействия реагирующих веществ с адсорбентом-катализатором. Основными стадиями процесса являются
1. Адсорбция кислорода с диссоциацией молекулы на атомы или радикалы.
2. Образование при адсорбции ион-радикалов - результат взаимных переходов электронов между катализатором и реагирующими веществами.
3. Возникновение при адсорбции ковалентных связей в результате перекрывания электронных орбиталей атомов катализатора и реагирущего вещества.
4. Образование координационных связей, в частности образование поверхностных β-комплексов для непредельных углеводородов.
В отсутствие адсорбента-катализатора все перечисленные процессы энергетически невыгодны и требуют затрат энергии для разрыва связей или перемещения электронов, так как энергия для осуществления указанных переходов поступает от адсорбента-катализатора и передается от внешней среды через адсорбент-катализатор.
Центрами адсорбции выступают ионные пары , состоящие из ионов металла (М) и кислорода (О-).
Избыточный заряд на металле и кислороде, который образуется из-за пространственного удаления друг от друга катионов, входящих в структуру центров адсорбции, делает возможным образование одновременно донорно-акцепторной и дативной связей, благодаря которым возрастает симбатно как адсорбционная способность адсорбента-катализатора по взвешенным веществам, так и каталитическая способность по окислению органических соединений.
Обеззараживающая способность адсорбента-катализатора обусловлена за счет образования активированных форм кислорода О2-, О- и О2 2- на поверхности активных центров адсорбента-катализатора при сорбции кислорода в период водовоздушной активации. Образующиеся супероксид-ионы взаимодействуют с водой с образованием Н2О2 и ион-радикалов состава HO2 •, НО•. Указанные ион-радикалы обладают существенно большей скоростью диффузии внутрь клеток микроорганизмов через клеточные мембраны и активностью в реакциях взаимодействия с энзимами внутри клеток по сравнению с молекулярным кислородом и хлором.
Определяющую роль в механизме и кинетике протекающих реакций играет химическое строение молекулы адсорбента-катализатора: тип лиганда и заместителей, природа центрального иона в молекуле.
Используя различные по своей природе лиганды и ионы металлов переменной валентности, можно изменить каталитическую активность адсорбента-катализатора, энергию активации и направление химических реакций в довольно широких пределах и создавать как селективные, так и полифункциональные катализаторы.
Шпинели отличаются от других оксидов легкостью перестройки структуры, наличием в ней дефектов и особым механизмом электронного обмена - "перескока" электронов между соседними ионами. Электронный обмен между ионами металлов по механизму "перескока" позволяет передать заряд адсорбированной молекуле кислорода, превратить ее в активный ион-радикал, что и обуславливает повышенную активность шпинелей в окислительных реакциях.
Введение модифицирующих добавок позволяет сформировать определенную поверхность адсорбента-катализатора по дзета-потенциалу, что обуславливает высокую эффективность адсорбента-катализатора по задержанию взвешенных веществ.
Пример 1
Адсорбент-катализатор следующего состава (массовая доля, %):
получают в лабораторных условиях.
Минеральный носитель в количестве 770 г, активные компоненты 200 г, модифицирующая добавка 15 г, пластификатор 15 г загружают в планетарную мельницу, где вся масса перемешивается и размалывается в течение 3 ч до дисперсного состава не выше 500 Å.
Однородную смесь вышеуказанных компонентов загружают в смеситель, куда добавляют воды в количестве 37-40 массовых долей (в %), тщательно перемешивают в течение 30 минут до получения тестообразной массы. Приготовленную массу формируют экструзией в виде гранул размером 5-7 мм.
После 24-36 ч провяливания на воздухе адсорбент-катализатор прокаливают при температуре 500-530°С в течение 4 часов при подъеме температуры 120-130°С в течение часа. После прокаливания адсорбент-катализатор подвергают обжигу при температуре 1100°С в течение 1 ч.
Все полученные таким образом адсорбенты-катализаторы испытывали на лабораторной фильтровальной установке по очистке бытовых, промышленных, дождевых сточных вод, природных и оборотных вод.
Пример 2
Опытные исследования по определению каталитической активности, задерживающей способности и обеззараживающего эффекта предлагаемого адсорбента-катализатора для выбора оптимального состава в процессе очистки природных вод, осуществляются на лабораторной установке, моделирующей работу фильтра с зернистой загрузкой.
Процесс очистки природных вод проводится с постхлорированием с дозой хлора 0,05-0,1 мг/дм3 для предотвращения вторичного развития микрофлоры в распределительной системе.
Стеклянную колонку d=30 мм и высотой 550 мм заполняют адсорбентом-катализатором h=400 мм с крупностью зерен 0,8-1,5 мм. Над слоем загрузки имеется свободный объем, предназначенный для расширения слоя при водовоздушной промывке. Скорость подачи воды на фильтровальную установку составляет 5 м/ч.
Лабораторный фильтр с подачей очищаемой воды сверху вниз оборудован системой равномерного распределения исходной воды через полиэтиленовую сетку. Регенерация осуществлялась промывкой загрузки с подачей водовоздушной смеси в течение 10-15 мин снизу установки.
Сравнительные данные по определению каталитической активности (по ХПК, железу, сульфатам, жесткости), обеззараживающей эффективности (по коли-индексу) образцов адсорбентов-катализаторов при различных соотношениях активных компонентов в процессе очистки природных вод представлены в таблице 1.
В таблице 2 представлены данные по сравнительной активности предлагаемого адсорбента-катализатора и прототипа.
Как видно из приведенных данных таблицы 2, адсорбент-катализатор обладает высокой каталитической активностью, необходимой для очистки природной воды до питьевого качества и позволяющей использовать адсорбент-катализатор на стадии осветления в технологической схеме водоподготовки природной воды для котлов среднего и высокого давления предприятий ТЭЦ с целью замены традиционно используемых малоэффективных фильтрующих материалов и снижения нагрузки на ионообменные смолы.
Пример 3
Очистка промышленных сточных вод осуществлена на фильтровальных станциях очистных сооружений АО Ангарского нефтехимического комбината, ОАО Ачинского НПЗ; очистка ливневых вод с целью дальнейшего использования их в производственном цикле осуществлена на станции по переработке ливневых и условно-чистых стоков ОАО "КАМАЗ" с применением оптимального образца адсорбента-катализатора, при следующем соотношении компонентов (массовая доля, %):
В период пилотных испытаний проведены эксперименты по проверке эффективности и стабильности адсорбента-катализатора и по уточнению оптимального времени фильтроцикла в течение нескольких фильтроциклов на реальных промышленных сточных водах (табл. 3).
Как видно из приведенных данных, адсорбент-катализатор обладает высокой механической прочностью при высокой эффективности. Благодаря высокой каталитической, сорбционной и обеззараживающей способности адсорбент-катализатор является универсальным фильтрующим материалом.
Применение адсорбента-катализатора позволяет решить проблему очистки и обеззараживания водных сред различного происхождения.
Сравнительные данные по определению каталитической активности и обеззараживающей эффективности образцов адсорбентов-катализаторов при различных соотношениях компонентов
Ag2O
Al(ОН)3
Fe3O4
ZnMn2O4
MgFeO4
Ag2O
Fe(ОН)3
Cu(OH)2
Fe3O4
ZnMg2O4
MgMn2O4
Ag2O
CuO
Fe3O4
Zn(OH)2
Cu(OH)2
CuFe2O4
Ag2O
Al(ОН)3
Fe3O4
ZnMn2O4
MgFeO4
Ag2O
Zn(OH)2
Fe3O4
CuMn2O4
Mg Mn2O4
Ag2O
Cu(OH)2
Fe(OH)2
Mg Mn2O4
ZnMn2O4
Ag2O
Al2О3
Zn(OH)2
Fe3O4
CuFe2O4
MgMn2O4
Ag2O
CuO
Zn(OH)2
Al(ОН)3
MgMn2O4
CuFe2О4
Сравнительные данные по активности предлагаемого адсорбента-катализатора и прототипа
Сравнительные данные по активности предлагаемого адсорбента-катализатора в течение нескольких фильтроциклов
название | год | авторы | номер документа |
---|---|---|---|
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ НЕОРГАНИЧЕСКИХ И/ИЛИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА КЕРАМИЧЕСКОМ НОСИТЕЛЕ | 2003 |
|
RU2295386C2 |
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ НЕОРГАНИЧЕСКИХ И/ИЛИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ПОЛИМЕРНОМ НОСИТЕЛЕ | 2003 |
|
RU2255805C2 |
СПОСОБ ЭЛЕКТРОКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ПИТЬЕВЫХ И СТОЧНЫХ ВОД | 2003 |
|
RU2286950C2 |
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ НЕОРГАНИЧЕСКИХ И/ИЛИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2019 |
|
RU2699228C1 |
СПОСОБ БИОКАТАЛИТИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД (ВАРИАНТЫ) | 2002 |
|
RU2258043C2 |
СПОСОБ ОКИСЛЕНИЯ СЕРНИСТЫХ И ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РАСТВОРАХ (ВАРИАНТЫ) | 2002 |
|
RU2224724C1 |
СПОСОБ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ В ГАЗОВЫХ ВЫБРОСАХ (ВАРИАНТЫ) | 2002 |
|
RU2225247C1 |
СПОСОБ ДООЧИСТКИ СТОЧНЫХ ВОД | 1997 |
|
RU2108298C1 |
СПОСОБ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ ОТ ВРЕДНЫХ ПРИМЕСЕЙ | 1992 |
|
RU2077494C1 |
СПОСОБ БИОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД | 2010 |
|
RU2448056C1 |
Изобретение относится к области очистки сточных, природных, оборотных вод. Предложена фильтрующая композиция состоящая из адсорбента-катализатора на минеральной основе и при необходимости поддерживающего слоя в виде гравия. Адсорбент-катализатор содержит активные компоненты - оксиды, гидроксиды металлов и шпинели металлов переменной валентности, модифицирующую добавку - органические основания и/или гетерополикислоты, пластификатор - кремнийорганические соединения и минеральный носитель - глину, Al2О3, SiO2 при следующем содержании компонентов адсорбента-катализатора (мас.%): активный компонент в виде оксидов, гидроксидов и шпинелей 15-50, органическое основание и/или гетерополикислоты 1-2, кремнийорганическое соединение 1-2, минеральный носитель остальное. Изобретение позволяет провести эффективную очистку от органики, взвешенных веществ, металлов, солей и E.coli. 1 з.п. ф-лы, 3 табл.
СПОСОБ ОЧИСТКИ ЖИДКОСТЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2176618C1 |
СПОСОБ ГЛУБОКОЙ ОЧИСТКИ ПОДЗЕМНЫХ ВОД | 1996 |
|
RU2087427C1 |
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ ЗАГРЯЗНЕНИЙ | 1995 |
|
RU2085516C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНЫХ СИСТЕМ ОБЩЕЙ ФОРМУЛЫ | 1991 |
|
RU2006466C1 |
RU 2059428 C1 10.05.1996. |
Авторы
Даты
2006-05-10—Публикация
2002-06-28—Подача