ГОЛОВНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА Российский патент 2006 года по МПК F17D1/65 F04D25/00 

Описание патента на изобретение RU2278317C2

Изобретение относится к газовой промышленности, а именно к транспорту природного газа на значительные расстояния, и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.

Известны различные компрессорные станции, содержащие газоперекачивающие аппараты, а также систему принудительного охлаждения газа, в качестве охлаждающего агента которой может быть использована вода (см., например, Эксплуатационнику магистральных газопроводов, Справочное пособие, Москва, Недра, 1987, с.100-106).

Известна компрессорная станция, в которой в качестве охлаждающего агента в установке принудительного маслоснабжения использован природный газ магистрального газопровода (см., например, RU 2140016 C1, 20.10.1999).

Недостатком известной станции является невысокая экономическая эффективность и усложнение конструкции, невысокая рентабельность из-за снижения скорости транспортировки газа.

Известны также различные компрессорные станции, в которых для охлаждения газа используют тепловые насосы (см., например, RU 2125212 C1, 20.10.1999).

Недостатком таких станций также является невысокая эффективность ввиду значительной материалоемкости установки для охлаждения транспортирования газа вследствие необходимости использования дополнительного испарителя, который устанавливают на магистральном газопроводе перед нагнетателем газоперекачивающего агрегата.

Использование теплового насоса с двумя испарителями хладагента в установке для охлаждения газа с автоматическим регулированием количества отбираемого от потока газа тепла как на входе, так и на выходе нагнетателя газоперекачивающего агрегата, уменьшая мощность, потребляемую на компримирование газа, приводит к дополнительным трудо- и материалозатратам, что снижает эффективность компрессорной станции в целом.

Наиболее близкой по технической сущности и достигаемому результату к заявленному изобретению является компрессорная станция, в которой для охлаждения транспортируемого газа использованы аппараты воздушного охлаждения газа (АВО), имеющие целый ряд преимуществ перед другими типами теплообменник аппаратов: они надежны в эксплуатации, экологически чисты, достаточно просто подключаются к обвязке компрессорной станции. Применяемые на компрессорных станциях АВО газа за счет высоких численных значений коэффициентов оребрения (примерно 8-20), характеризующих отношение площади наружной поверхности к площади поверхности гладких труб, имеют весьма развитые наружные поверхности теплообмена (см. также Козаченко А.Н. и др., Энергетика трубопроводного транспорта газа, ГУП Издательство и "Нефть и газ" РГУ нефти и газа им. И.М.Губкина, Москва, 2001, с.135-143).

Однако в известных конструкциях компрессорных станциях с использованием АВО недостаточно оптимизированы параметры пучка оребренных труб теплообменной секции АВО газа, что приводит к повышению материалоемкости пучка и самой теплообменной секции и, как следствие, снижает экономическую эффективность компрессорной станции в целом.

Задачей настоящего изобретения является повышение эффективности работы компрессорной станции при одновременном снижении трудо- и материалозатрат и обеспечении высоких показателей теплообмена, а также надежности работы и долговечности эксплуатации.

Поставленная задача решается за счет того, что головная компрессорная станция газопровода, согласно изобретению, установлена непосредственно после газового месторождения и включает системы очистки технологического газа от механических примесей, осушки от газового конденсата и влаги, удаления побочных продуктов, расположенные последовательно газоперекачивающие агрегаты, соединенные на входе технологическими трубопроводами обвязки с системой подготовки, по крайней мере, технологического газа и на выходе с установкой охлаждения технологического газа и через запорную арматуру, подводящий и отводящий трубопроводы с магистральным газопроводом, причем установка охлаждения технологического газа оснащена не менее чем одним, преимущественно состоящим не менее чем из двух теплообменных секций аппаратом воздушного охлаждения газа, каждая теплообменная секция которого выполнена с многорядным пучком оребренных одноходовых труб, которые образуют в пределах каждого ряда в проекции на условную плоскость, нормальную к вектору потока подводимой к трубам внешней теплообменной среды - охлаждающего потока воздуха и проходящую через центральные продольные оси труб каждого ряда, участки полной аэродинамической непрозрачности, соответствующие проекциям на указанную плоскость труб без учета оребрения, участки полной аэродинамической прозрачности, соответствующие проекциям на указанную плоскость зазоров между обращенными друг к другу кромками ребер смежных в ряду труб, и участки неполной аэродинамической прозрачности, ограниченные каждый с одной стороны условной прямой, проходящей по вершинам ребер, а с другой стороны - контуром тела трубы по основаниям ребер, причем удельное соотношение на единицу площади упомянутой условной плоскости суммарных площадей проекций указанных участков с различной аэродинамической прозрачностью в каждом ряду составляет соответственно (0,85-1,15):(1,82-2,17):(1,80-2,19).

В головной компрессорной станции могут быть использованы газоперекачивающие агрегаты с одноступенчатыми неполнонапорными нагнетателями, а последовательная их обвязка может содержать для каждого агрегата кран на всасывающем трубопроводе для приема газа, кран на выходном трубопроводе для подачи сжатого газа через режимные краны в нагнетательный трубопровод либо на вход следующего нагнетателя для обеспечения двухступенчатого сжатия, обводной кран для работы в группе из двух и трех агрегатов и обводные краны соответственно для использования в период пуска и остановки агрегата и для заполнения контура нагнетателя газом перед пуском агрегата в работу, а также свечной кран для продувки контура нагнетателя перед пуском и сброса газа в атмосферу при любых остановках агрегата, расположенный на нагнетательной стороне трубопровода до крана, установленного на выходном трубопроводе.

Система осушки технологического газа от газового конденсата и влаги может содержать сепараторы с использованием твердых и/или жидких поглотителей, в качестве последних из которых предпочтительно использован диэтиленгликоль или триэтиленгликоль.

По крайней мере часть газоперекачивающих агрегатов могут быть выполнены с приводом центробежного нагнетателя от газовой турбины, газоперекачивающий агрегат выполнен в виде стационарной установки преимущественно типа ГТ-6-750 или ГТК-16 производства Уральского моторного завода, либо ГТ-700-5, или ГТ-700-6, или ГТК-10, или ГТК-10-2, или ГТК-10-4 производства Невского завода, газоперекачивающий агрегат может быть выполнен с газотурбинным приводом центробежного нагнетателя, содержащим газовую авиационную турбину, реконструированную для использования в газоперекачивающих агрегатах, например ГПА-Ц-6,3 или ГПА-Ц-6,3А, или ГПА-Ц-6,3А преимущественно с двигателем марки Д-336, или ГПА-Ц-6,3Б преимущественно с двигателем марки Д-336 или НК-14СТ, или ГП-Ц-16, или ГП-Ц-16Л преимущественно с двигателем марки АЛ-31СТ или ГПА-Ц-16А преимущественно с двигателем марки НК-38СТ или ГПА-Ц-25 преимущественно с двигателем марки НК-36СТ, газоперекачивающий агрегат может быть выполнен с газотурбинным приводом центробежного нагнетателя в виде судовой газотурбинной установки, например, по типу ГПА-2,5 преимущественно с двигателем марки ГТГ-2,5 или ГПУ-6 преимущественно с двигателем марки ДТ-71 или ГПУ-10А преимущественно с двигателем марки ДН-70 или ГПА-Ц-16С преимущественно с двигателем марки ДГ-90, либо ГПУ-25 преимущественно с двигателем типа ДН-80.

По крайней мере часть газоперекачивающих агрегатов могут быть выполнены электроприводными преимущественно типа СТМ-4000, либо СТД, либо СТД-12,5, или типа А3-4500-1500, либо СГД-12,5.

По крайней мере часть газоперекачивающих агрегатов могут быть снабжены газомотокомпрессорными установками с поршневыми агрегатами преимущественно типа 10ГК, либо 10ГКМ, либо 10ГКН, либо 10ГКНА.

По крайней мере один газоперекачивающий агрегат может быть выполнен с полнонапорным центробежным нагнетателем газа со степенью сжатия от 1,45 до 1,51 предпочтительно типа Н-196-1,45, или 650-21-1, или 820-21-1, либо типа нагнетателей фирмы Купер-Бессемер марок 280-30, или 2ВВ-30, либо нагнетателей фирмы Нуово-Пиньони марок PCL-802/24, либо PCL-1001-40.

По крайней мере часть газоперекачивающих агрегатов может быть снабжена устанавливаемым преимущественно непосредственно за газотурбинной установкой в зоне выхода отработанных горячих газов рекуператором для утилизации теплоты уходящих газов с подогревом воздуха, подаваемого в турбину, причем рекуператор может быть выполнен в виде регенеративного воздухоподогревателя преимущественно в виде моноблока с корпусом цилиндроконической формы, по крайней мере в пределах большей части его длины, или рекуператор может быть выполнен в виде регенеративного воздухоподогревателя блочного типа предпочтительно секционно-блочным и сообщен с выходной частью газотурбинной установки и с атмосферой газоходом с диффузором на участке подачи горячих газов в теплообменную зону регенеративного воздухоподогревателя и конфузором на выходе из него.

Система подготовки технологического, а также пускового, и/или топливного, и/или импульсного газа может содержать по крайней мере один пылеуловитель циклонного типа или по крайней мере один пылеуловитель циклонного типа и по крайней мере один фильтр-сепаратор, установленный последовательно по ходу газа после циклонного пылеуловителя или системы циклонных пылеуловителей, причем фильтр-сепаратор может включать не менее двух имеющих сменные фильтры технологических секций - фильтрующей, предназначенной для коагуляции жидких и задержания механических частиц, и секции сепарации, предназначенной для завершения очистки газа от влаги, а также может содержать конденсатосборник, систему обогрева, преимущественно электрического, по крайней мере нижней части фильтр-сепаратора и оборудован контрольно-измерительной аппаратурой.

Каждая теплообменная секция аппарата воздушного охлаждения газа может быть выполнена горизонтального типа или теплообменные секции аппарата воздушного охлаждения газа установлены с образованием скатов.

Многорядный пучок оребренных труб каждой теплообменной секции аппарата воздушного охлаждения газа может быть сообщен через камеры входа и выхода газа и коллекторы подвода и отвода газа с технологическими трубопроводами станции, при этом многорядный пучок труб теплообменной секции может содержать от двух до четырнадцати рядов, причем каждая теплообменная секция аппарата воздушного охлаждения газа может включать сосуд для внешней охлаждающей среды с продольными боковыми стенами, поперечными торцевыми стенами, образованными камерами входа и выхода внутритрубной среды и днищем, образованным корпусами диффузоров вентиляторов, которые могут быть установлены под теплообменными секциями, при этом под каждой секцией может быть установлено от одного до шести вентиляторов, причем каждый вентилятор размещен в аэродинамическом защитном кожухе, содержащем диффузор и коллектор плавного входа, при этом коллектор плавного входа может быть выполнен в продольном сечении переменной кривизны с конфигурацией, по крайней мере, со стороны внутренней поверхности, например по лемнискате, и преимущественно круглым в плане, причем входное устье кожуха в зоне перехода коллектора в диффузор может быть выполнено диаметром, составляющим 0,6-0,95 ширины теплообменной секции, а диффузор кожуха каждого из вентиляторов может быть выполнен в своей верхней части в зоне примыкания к элементам каркаса теплообменной секции с конфигурацией контура выходной кромки, обеспечивающей возможность присоединения к соответствующим элементам контура каркаса секции, а вентиляторы могут быть выполнены преимущественно двух- или трехлопастными и с регулируемым изменением угла поворота лопастей, с приводом колеса вентилятора преимущественно прямым, безредукторным от тихоходного электродвигателя, его мощностью, составляющей предпочтительно 2,5-12,0 кВТ и номинальной частотой вращения предпочтительно 290-620 мин-1.

Головная компрессорная станция может быть обустроена системой аппаратов воздушного охлаждения газа, образующих конструктивный комплекс объединенных, по крайней мере, в одно поле аппаратов воздушного охлаждения газа - "поле АВО", и выполнена с опорными конструкциями, объединенными в общий пространственный блок в пределах "поля АВО", в том числе с возможностью частичного опирания опорной конструкции каждого последующего аппарата воздушного охлаждения газа на опорную конструкцию предыдущего.

Технический результат, обеспечиваемый изобретением, состоит в повышении эффективности головной компрессорной станции, снижении трудо- и материалозатрат при обеспечении высоких показателей теплообмена и надежности работы за счет оптимизации параметров пучка теплообменных оребренных труб, используемого в составе головной компрессорной станции аппарата воздушного охлаждения газа, выражающейся в оптимальном размещении труб в пучке вследствие примененной в изобретении конструкции складчатых дистанцирующих элементов, параметры которых обеспечивают возможность оптимизации также и самой теплообменной секции за счет более плотного расположения оребренных труб в пучке при одновременном обеспечении высоких показателей теплообмена, надежности и долговечности работы.

Сущность изобретения поясняется чертежами, где

на фиг.1 изображен пучок оребренных труб теплообменной секции аппарата воздушного охлаждения газа;

на фиг.2 - узел А на фиг.1, отображающий расположение оребренных теплообменных труб в ряду пучка;

на фиг.3 - оребренная теплообменная труба пучка, фрагмент;

на фиг.4 - узел Б на фиг.3.

Головная компрессорная станция газопровода установлена непосредственно после газового месторождения и включает системы очистки технологического газа от механических примесей, осушки от газового конденсата и влаги, удаления побочных продуктов, расположенные последовательно газоперекачивающие агрегаты (на чертежах не показано), соединенные на входе технологическими трубопроводами (на чертежах не показано) обвязки с системой подготовки, по крайней мере, технологического газа и на выходе с установкой охлаждения технологического газа (на чертежах не показано) и через запорную арматуру (на чертежах не показано), подводящий и отводящий трубопроводы (на чертежах не показано) с магистральным газопроводом (на чертежах не показано).

Установка охлаждения технологического газа оснащена не менее чем одним преимущественно состоящим не менее чем из двух теплообменных секций 1 аппаратом воздушного охлаждения газа (на чертежах не показано), каждая теплообменная секция 1 которого выполнена с многорядным пучком оребренных одноходовых труб 2, которые образуют в пределах каждого ряда 3 в проекции на условную плоскость, нормальную к вектору потока подводимой к трубам 2 внешней теплообменной среды - охлаждающего потока воздуха и проходящую через центральные продольные оси труб 2 каждого ряда 3, участки полной аэродинамической непрозрачности 4, соответствующие проекциям на указанную плоскость труб 2 без учета оребрения 5, участки полной аэродинамической прозрачности 6, соответствующие проекциям на указанную плоскость зазоров между обращенными друг к другу кромками ребер 7 смежных в ряду 3 труб 2, и участки неполной аэродинамической прозрачности 8, ограниченные каждый с одной стороны условной прямой, проходящей по вершинам 9 ребер 7, а с другой стороны - контуром тела трубы 2 по основаниям 10 ребер 7.

Удельное соотношение на единицу площади упомянутой условной плоскости суммарных площадей проекций указанных участков 4, 6, 8 с различной аэродинамической прозрачностью в каждом ряду 3 составляет соответственно (0,85-1,15):(1,82-2,17):(1,80-2,19).

В головной компрессорной станции могут быть использованы газоперекачивающие агрегаты с одноступенчатыми неполнонапорными нагнетателями (на чертежах не показано), а последовательная их обвязка может содержать для каждого агрегата кран (на чертежах не показано) на всасывающем трубопроводе (на чертежах не показано) для приема газа, кран на выходном трубопроводе (на чертежах не показано) для подачи сжатого газа через режимные краны в нагнетательный трубопровод (на чертежах не показано) либо на вход следующего нагнетателя для обеспечения двухступенчатого сжатия, обводной кран для работы в группе из двух и трех агрегатов и обводные краны соответственно для использования в период пуска и остановки агрегата и для заполнения контура нагнетателя газом перед пуском агрегата в работу, а также свечной кран (на чертежах не показано) для продувки контура нагнетателя перед пуском и сброса газа в атмосферу при любых остановках агрегата, расположенный на нагнетательной стороне трубопровода до крана, установленного на выходном трубопроводе (на чертежах не показано).

Система осушки технологического газа от газового конденсата и влаги может содержать сепараторы с использованием твердых и/или жидких поглотителей, в качестве последних из которых предпочтительно использован диэтиленгликоль или триэтиленгликоль.

По крайней мере часть газоперекачивающих агрегатов могут быть выполнены с приводом центробежного нагнетателя (на чертежах не показано) от газовой турбины, газоперекачивающий агрегат выполнен в виде стационарной установки (на чертежах не показано) преимущественно типа ГТ-6-750 или ГТК-16 производства Уральского моторного завода, либо ГТ-700-5, или ГТ-700-6, или ГТК-10, или ГТК-10-2, или ГТК-10-4 производства Невского завода, газоперекачивающий агрегат может быть выполнен с газотурбинным приводом центробежного нагнетателя (на чертежах не показано), содержащим газовую авиационную турбину, реконструированную для использования в газоперекачивающих агрегатах, например ГПА-Ц-6,3 или ГПА-Ц-6,3А, или ГПА-Ц-6,3А преимущественно с двигателем марки Д-336, или ГПА-Ц-6,3Б преимущественно с двигателем марки Д-336 или НК-14СТ, или ГП-Ц-16, или ГП-Ц-16Л преимущественно с двигателем марки АЛ-31СТ, или ГПА-Ц-16А преимущественно с двигателем марки НК-38СТ, или ГПА-Ц-25 преимущественно с двигателем марки НК-36СТ, газоперекачивающий агрегат может быть выполнен с газотурбинным приводом центробежного нагнетателя в виде судовой газотурбинной установки (на чертежах не показано), например, по типу ГПА-2,5 преимущественно с двигателем марки ГТГ-2,5, или ГПУ-6 преимущественно с двигателем марки ДТ-71, или ГПУ-10А преимущественно с двигателем марки ДН-70, или ГПА-Ц-16С преимущественно с двигателем марки ДГ-90, либо ГПУ-25 преимущественно с двигателем типа ДН-80.

По крайней мере часть газоперекачивающих агрегатов могут быть выполнены электроприводными преимущественно типа СТМ-4000, либо СТД, либо СТД-12,5, или типа А3-4500-1500, либо СГД-12,5.

По крайней мере часть газоперекачивающих агрегатов могут быть снабжены газомотокомпрессорными установками с поршневыми агрегатами (на чертежах не показано) преимущественно типа 10ГК, либо 10ГКМ, либо 10ГКН, либо 10ГКНА.

По крайней мере один газоперекачивающий агрегат может быть выполнен с полнонапорным центробежным нагнетателем газа со степенью сжатия от 1,45 до 1,51 предпочтительно типа Н-196-1,45, или 650-21-1, или 820-21-1, либо типа нагнетателей фирмы Купер-Бессемер марок 280-30, или 2ВВ-30, либо нагнетателей фирмы Нуово-Пиньони марок PCL-802/24, либо PCL-1001-40.

По крайней мере часть газоперекачивающих агрегатов может быть снабжена устанавливаемым преимущественно непосредственно за газотурбинной установкой (на чертежах не показано) в зоне выхода отработанных горячих газов рекуператором (на чертежах не показано) для утилизации теплоты уходящих газов с подогревом воздуха, подаваемого в турбину, причем рекуператор может быть выполнен в виде регенеративного воздухоподогревателя, преимущественно в виде моноблока (на чертежах не показано) с корпусом цилиндроконической формы, по крайней мере, в пределах большей части его длины, или рекуператор может быть выполнен в виде регенеративного воздухоподогревателя блочного типа (на чертежах не показано) предпочтительно секционно-блочным и сообщен с выходной частью газотурбинной установки и с атмосферой газоходом с диффузором на участке подачи горячих газов в теплообменную зону регенеративного воздухоподогревателя и конфузором на выходе из него.

Система подготовки технологического, а также пускового, и/или топливного, и/или импульсного газа может содержать по крайней мере один пылеуловитель циклонного типа (на чертежах не показано) или по крайней мере один пылеуловитель циклонного типа (на чертежах не показано) и по крайней мере один фильтр-сепаратор (на чертежах не показано), установленный последовательно по ходу газа после циклонного пылеуловителя или системы циклонных пылеуловителей, причем фильтр-сепаратор может включать не менее двух имеющих сменные фильтры технологических секций - фильтрующей, предназначенной для коагуляции жидких и задержания механических частиц, и секции сепарации, предназначенной для завершения очистки газа от влаги, а также может содержать конденсатосборник (на чертежах не показано), систему обогрева (на чертежах не показано) преимущественно электрического, по крайней мере нижней части фильтра-сепаратора, и оборудован контрольно-измерительной аппаратурой (на чертежах не показано).

Каждая теплообменная секция 1 аппарата воздушного охлаждения газа может быть выполнена горизонтального типа или теплообменные секции 1 аппарата воздушного охлаждения газа установлены с образованием скатов.

Многорядный пучок оребренных труб 2 каждой теплообменной секции 1 аппарата воздушного охлаждения газа может быть сообщен через камеры входа и выхода газа (на чертежах не показано) и коллекторы подвода и отвода газа (на чертежах не показано) с технологическими трубопроводами станции, при этом многорядный пучок труб 2 теплообменной секции 1 может содержать от двух до четырнадцати рядов 3, причем каждая теплообменная секция 1 аппарата воздушного охлаждения газа может включать сосуд для внешней охлаждающей среды с продольными боковыми стенами, поперечными торцевыми стенами, образованными камерами входа и выхода внутритрубной среды и днищем, образованным корпусами диффузоров (на чертежах не показано) вентиляторов (на чертежах не показано), которые могут быть установлены под теплообменными секциями.

Под каждой секцией может быть установлено от одного до шести вентиляторов (на чертежах не показано), причем каждый вентилятор размещен в аэродинамическом защитном кожухе (на чертежах не показано), содержащем диффузор и коллектор плавного входа (на чертежах не показано).

Коллектор плавного входа может быть выполнен в продольном сечении переменной кривизны с конфигурацией, по крайней мере, со стороны внутренней поверхности, например по лемнискате, и преимущественно круглым в плане, причем входное устье кожуха в зоне перехода коллектора в диффузор может быть выполнено диаметром, составляющим 0,6-0,95 ширины теплообменной секции, а диффузор кожуха каждого из вентиляторов может быть выполнен в своей верхней части в зоне примыкания к элементам каркаса теплообменной секции с конфигурацией контура выходной кромки, обеспечивающей возможность присоединения к соответствующим элементам контура каркаса секции.

Вентиляторы могут быть выполнены преимущественно двух- или трехлопастными и с регулируемым изменением угла поворота лопастей, с приводом колеса вентилятора преимущественно прямым, безредукторным от тихоходного электродвигателя, его мощностью, составляющей предпочтительно 2,5-12,0 кВТ, и номинальной частотой вращения предпочтительно 290-620 мин-1.

Головная компрессорная станция может быть обустроена системой аппаратов воздушного охлаждения газа (на чертежах не показано), образующих конструктивный комплекс объединенных, по крайней мере, в одно поле аппаратов воздушного охлаждения газа - "поле АВО", и выполнена с опорными конструкциями (на чертежах не показано), объединенными в общий пространственный блок в пределах "поля АВО", в том числе с возможностью частичного опирания опорной конструкции каждого последующего аппарата воздушного охлаждения газа на опорную конструкцию предыдущего.

Головная компрессорная станция газопровода работает следующим образом.

При движении газа из-за разного рода гидравлических сопротивлений по длине трубопровода происходит падение его давления, что приводит к снижению пропускной способности газопровода. Поэтому транспортировать газ в достаточном количестве и на большие расстояния только за счет естественного пластового давления нельзя. Компрессорные станции используют для поддержания заданного расхода транспортируемого газа и обеспечения его оптимального давления в трубопроводе.

При добыче и транспортировке природного газа в нем практически всегда содержатся различного рода примеси: песок, сварной шлам, конденсат тяжелых углеводородов, вода, масло и т.д. Основным источником загрязнения природного газа является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ, поэтому перед подачей газа в газоперекачивающие агрегаты, входящие в состав компрессорной станции, газ на входе проходит через систему подготовки, которая в зависимости от конкретных условий содержит различные очистные конструкции, например циклонные пылеуловители, фильтры-сепараторы и т.д. Энергоемкость транспорта природных газов в основном определяется энергоемкостью процесса перемещения газа по трубопроводу. Для снижения этих энергозатрат необходимо снижать температуру транспортируемого газа, повышать его давление и охлаждать газ после его компримирования. Так, при охлаждении газа в газопроводе, например, от 50÷55°С до 25÷30°С, пропускную способность газопровода можно увеличить на 4÷5%. Газ поступает в установку охлаждения, оснащенную не менее чем одним преимущественно состоящим не менее чем из двух теплообменных секций аппаратом воздушного охлаждения газа. Проходя по многорядному одноходовому пучку оребренных труб, выполненных в соответствии с разработанным изобретением, газ под действием подаваемого снизу вентиляторами в межтрубное пространство воздуха охлаждается.

Учитывая, что аппарат воздушного охлаждения газа является одним из основных и необходимых технологических узлов компрессорной станции, очевидно, что эффективность охлаждения газа является определяющей для эффективности работы компрессорной станции, в соответствии с чем оптимизация параметров оребрения теплообменных труб в пучке, обеспечивая повышение эффективности процесса охлаждения газа за счет повышения теплоаэродинамических характеристик, улучшения условий обтекания труб пучка рабочей средой, повышения срока службы пучка теплообменных труб за счет обеспечения жесткости и устойчивости пучка при одновременном исключении зацепления ребер труб смежных рядов и отсутствии нарушений равномерности проходного сечения для охлаждающего воздуха, повышения коэффициента теплоотдачи поверхности оребренных труб со стороны охлаждающего воздуха, увеличения плотности упаковки труб в пучке, способствует эффективности системы газоснабжения в целом.

Похожие патенты RU2278317C2

название год авторы номер документа
СИСТЕМА ГАЗОСНАБЖЕНИЯ, ГАЗОТРАНСПОРТНАЯ СЕТЬ, МЕЖРЕГИОНАЛЬНАЯ ГАЗОТРАНСПОРТНАЯ СЕТЬ И РЕГИОНАЛЬНАЯ ГАЗОТРАНСПОРТНАЯ СЕТЬ 2004
  • Селиванов Николай Павлович
RU2304248C2
ЛИНЕЙНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ 2004
  • Селиванов Николай Павлович
RU2279011C2
КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА 2004
  • Селиванов Николай Павлович
RU2277670C2
ДОЖИМНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА 2004
  • Селиванов Николай Павлович
RU2279012C2
КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА 2004
  • Селиванов Николай Павлович
RU2279013C2
КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА 2004
  • Селиванов Николай Павлович
RU2277671C2
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2372473C1
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2373381C1
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА (ВАРИАНТЫ) 2004
  • Селиванов Николай Павлович
RU2331830C2
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОВОГО, ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2008
RU2373380C1

Иллюстрации к изобретению RU 2 278 317 C2

Реферат патента 2006 года ГОЛОВНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ ГАЗОПРОВОДА

Изобретение относится к газовой промышленности и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования. Головная компрессорная станция газопровода установлена непосредственно после газового месторождения и включает системы очистки технологического газа от механических примесей, осушки от газового конденсата и влаги, удаления побочных продуктов, расположенные последовательно газоперекачивающие агрегаты, соединенные на входе технологическими трубопроводами обвязки с системой подготовки, по крайней мере, технологического газа и на выходе с установкой охлаждения технологического газа и через запорную арматуру, подводящий и отводящий трубопроводы с магистральным газопроводом, причем установка охлаждения технологического газа оснащена не менее чем одним, преимущественно состоящим не менее чем из двух теплообменных секций, аппаратом воздушного охлаждения газа, каждая теплообменная секция которого выполнена с многорядным пучком оребренных одноходовых труб, которые образуют в пределах каждого ряда в проекции на условную плоскость, нормальную к вектору потока подводимой к трубам внешней теплообменной среды - охлаждающего потока воздуха и проходящую через центральные продольные оси труб каждого ряда, участки полной аэродинамической непрозрачности, соответствующие проекциям на указанную плоскость труб без учета оребрения, участки полной аэродинамической прозрачности, соответствующие проекциям на указанную плоскость зазоров между обращенными друг к другу кромками ребер смежных в ряду труб, и участки неполной аэродинамической прозрачности, ограниченные каждый с одной стороны условной прямой, проходящей по вершинам ребер, а с другой стороны - контуром тела трубы по основаниям ребер, причем удельное соотношение на единицу площади упомянутой условной плоскости суммарных площадей проекций указанных участков с различной аэродинамической прозрачностью в каждом ряду составляет соответственно (0,85-1,15):(1,82-2,17):(1,80-2,19). Технический результат, обеспечиваемый изобретением, состоит в повышении эффективности компрессорной станции, снижении трудо- и материалозатрат при обеспечении высоких показателей теплообмена и надежности работы за счет оптимизации параметров пучка теплообменных оребренных труб. 11 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 278 317 C2

1. Головная компрессорная станция газопровода, характеризующаяся тем, что она установлена непосредственно после газового месторождения и включает системы очистки технологического газа от механических примесей, осушки от газового конденсата и влаги, удаления побочных продуктов, расположенные последовательно газоперекачивающие агрегаты, соединенные на входе технологическими трубопроводами обвязки с системой подготовки, по крайней мере, технологического газа и на выходе с установкой охлаждения технологического газа и через запорную арматуру, подводящий и отводящий трубопроводы с магистральным газопроводом, причем установка охлаждения технологического газа оснащена не менее чем одним, преимущественно состоящим не менее чем из двух теплообменных секций, аппаратом воздушного охлаждения газа, каждая теплообменная секция которого выполнена с многорядным пучком оребренных одноходовых труб, которые образуют в пределах каждого ряда в проекции на условную плоскость, нормальную к вектору потока подводимой к трубам внешней теплообменной среды - охлаждающего потока воздуха и проходящую через центральные продольные оси труб каждого ряда, участки полной аэродинамической непрозрачности, соответствующие проекциям на указанную плоскость труб без учета оребрения, участки полной аэродинамической прозрачности, соответствующие проекциям на указанную плоскость зазоров между обращенными друг к другу кромками ребер смежных в ряду труб, и участки неполной аэродинамической прозрачности, ограниченные каждый с одной стороны условной прямой, проходящей по вершинам ребер, а с другой стороны - контуром тела трубы по основаниям ребер, причем удельное соотношение на единицу площади упомянутой условной плоскости суммарных площадей проекций указанных участков с различной аэродинамической прозрачностью в каждом ряду составляет соответственно (0,85-1,15):(1,82-2,17):(1,80-2,19).2. Головная компрессорная станция по п.1, отличающаяся тем, что в ней использованы газоперекачивающие агрегаты с одноступенчатыми неполнонапорными нагнетателями, а последовательная их обвязка содержит для каждого агрегата кран на всасывающем трубопроводе для приема газа, кран на выходном трубопроводе для подачи сжатого газа через режимные краны в нагнетательный трубопровод либо на вход следующего нагнетателя для обеспечения двухступенчатого сжатия, обводной кран для работы в группе из двух и трех агрегатов и обводные краны соответственно для использования в период пуска и остановки агрегата и для заполнения контура нагнетателя газом перед пуском агрегата в работу, а также свечной кран для продувки контура нагнетателя перед пуском и сброса газа в атмосферу при любых остановках агрегата, расположенный на нагнетательной стороне трубопровода до крана, установленного на выходном трубопроводе.3. Головная компрессорная станция по п.1, отличающаяся тем, что система осушки технологического газа от газового конденсата и влаги содержит сепараторы с использованием твердых и/или жидких поглотителей, в качестве последних из которых предпочтительно использован диэтиленгликоль или триэтиленгликоль.4. Головная компрессорная станция по п.1, отличающаяся тем, что, по крайней мере, часть газоперекачивающих агрегатов выполнены с приводом центробежного нагнетателя от газовой турбины, газоперекачивающий агрегат выполнен в виде стационарной установки, или газоперекачивающий агрегат выполнен с газотурбинным приводом центробежного нагнетателя, содержащим газовую авиационную турбину, реконструированную для использования в газоперекачивающих агрегатах, или газоперекачивающий агрегат выполнен с газотурбинным приводом центробежного нагнетателя в виде судовой газотурбинной установки.5. Головная компрессорная станция по п.1, отличающаяся тем, что, по крайней мере, часть газоперекачивающих агрегатов выполнена электроприводными.6. Головная компрессорная станция по п.1, отличающаяся тем, что, по крайней мере, часть газоперекачивающих агрегатов снабжена газомотокомпрессорными установками с поршневыми агрегатами.7. Головная компрессорная станция по п.1, отличающаяся тем, что, по крайней мере, один газоперекачивающий агрегат выполнен с полнонапорным центробежным нагнетателем газа со степенью сжатия от 1,45 до 1,51.8. Головная компрессорная станция по п.1, отличающаяся тем, что, по крайней мере, часть газоперекачивающих агрегатов снабжена устанавливаемым преимущественно непосредственно за газотурбинной установкой в зоне выхода отработанных горячих газов рекуператором для утилизации теплоты уходящих газов с подогревом воздуха, подаваемого в турбину, причем рекуператор выполнен в виде регенеративного воздухоподогревателя, преимущественно в виде моноблока с корпусом цилиндроконической формы, по крайней мере, в пределах большей части его длины, или рекуператор выполнен в виде регенеративного воздухоподогревателя блочного типа предпочтительно секционно-блочным и сообщен с выходной частью газотурбинной установки и с атмосферой газоходом с диффузором на участке подачи горячих газов в теплообменную зону регенеративного воздухоподогревателя и конфузором на выходе из него.9. Головная компрессорная станция по п.1, отличающаяся тем, что система подготовки газа содержит, по крайней мере, один пылеуловитель циклонного типа, или по крайней мере, один пылеуловитель циклонного типа и, по крайней мере, один фильтр-сепаратор, установленный последовательно по ходу газа после циклонного пылеуловителя или системы циклонных пылеуловителей, причем фильтр-сепаратор включает не менее двух имеющих сменные фильтры технологических секций - фильтрующей, предназначенной для коагуляции жидких и задержания механических частиц, и секции сепарации, предназначенной для завершения очистки газа от влаги, а также содержит конденсатосборник, систему обогрева, преимущественно электрического, по крайней мере, нижней части фильтр-сепаратора и оборудован контрольно-измерительной аппаратурой.10. Головная компрессорная станция по п.1, отличающаяся тем, что каждая теплообменная секция аппарата воздушного охлаждения газа выполнена горизонтального типа или теплообменные секции аппарата воздушного охлаждения газа установлены с образованием скатов.11. Головная компрессорная станция по п.1, отличающаяся тем, что многорядный пучок оребренных труб каждой теплообменной секции аппарата воздушного охлаждения газа сообщен через камеры входа и выхода газа и коллекторы подвода и отвода газа с технологическими трубопроводами станции, при этом многорядный пучок труб теплообменной секции содержит от двух до четырнадцати рядов, причем каждая теплообменная секция аппарата воздушного охлаждения газа включает сосуд для внешней охлаждающей среды с продольными боковыми стенами, поперечными торцевыми стенами, образованными камерами входа и выхода внутритрубной среды и днищем, образованным корпусами диффузоров вентиляторов, которые установлены под теплообменными секциями, при этом под каждой секцией установлено от одного до шести вентиляторов, причем каждый вентилятор размещен в аэродинамическом защитном кожухе, содержащем диффузор и коллектор плавного входа, при этом коллектор плавного входа выполнен в продольном сечении переменной кривизны с конфигурацией, по крайней мере, со стороны внутренней поверхности, например, по лемнискате, и преимущественно круглым в плане, причем входное устье кожуха в зоне перехода коллектора в диффузор выполнено диаметром, составляющим 0,6-0,95 ширины теплообменной секции, а диффузор кожуха каждого из вентиляторов выполнен в своей верхней части в зоне примыкания к элементам каркаса теплообменной секции с конфигурацией контура выходной кромки, обеспечивающей возможность присоединения к соответствующим элементам контура каркаса секции, а вентиляторы выполнены преимущественно двух- или трехлопастными и с регулируемым изменением угла поворота лопастей, с приводом колеса вентилятора преимущественно прямым, безредукторным от тихоходного электродвигателя, его мощностью, составляющей предпочтительно 2,5-12,0 кВТ и номинальной частотой вращения предпочтительно 290-620 мин-1.12. Головная компрессорная станция по п.1, отличающаяся тем, что она обустроена системой аппаратов воздушного охлаждения газа, образующих конструктивный комплекс объединенных, по крайней мере, в одно поле аппаратов воздушного охлаждения газа - "поле АВО", и выполнена с опорными конструкциями, объединенными в общий пространственный блок в пределах "поля АВО", в том числе с возможностью частичного опирания опорной конструкции каждого последующего аппарата воздушного охлаждения газа на опорную конструкцию предыдущего.

Документы, цитированные в отчете о поиске Патент 2006 года RU2278317C2

Компрессорная станция магистрального газопровода 1990
  • Щербатенко Игорь Вадимович
SU1774120A1
СПОСОБ ОХЛАЖДЕНИЯ УГЛЕВОДОРОДНОГО ГАЗА ПРИ ПОДГОТОВКЕ К ТРАНСПОРТУ 2001
  • Дудов А.Н.
  • Кульков А.Н.
  • Гузов В.Ф.
  • Салихов Ю.Б.
  • Воронин В.И.
  • Ставицкий В.А.
RU2200272C2
КОМПРЕССОРНАЯ СТАНЦИЯ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА 2002
  • Важенин Ю.И.
  • Иванов И.А.
  • Михаленко С.В.
  • Тимербулатов Г.Н.
RU2198342C1
ГАЗОПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ 2001
  • Барсуков В.И.
  • Водбольский И.Ю.
  • Васин О.Е.
  • Ефанов В.И.
  • Забродин Ю.В.
  • Канаев Александр Васильевич
  • Николаев В.В.
  • Никишин В.А.
  • Олексийко С.М.
  • Рыжинский И.Н.
RU2208184C1
Аппарат воздушного охлаждения газа компрессорной станции 1990
  • Федорин Александр Иванович
SU1765532A1
АППАРАТ ВОЗДУШНОГО ОХЛАЖДЕНИЯ 1993
  • Андреевский В.В.
  • Баранов Ю.М.
  • Игнатьев М.П.
  • Дубиновский И.В.
RU2075714C1
Способ получения твердых металлических изделий 1934
  • Абиндер А.А.
SU39394A1
РАНОЗАЖИВЛЯЮЩАЯ МАЗЬ "ЭПОФЕН" 1997
  • Алкацева Н.И.
  • Поляков В.С.
  • Имашева М.А.
  • Шелученко В.В.
  • Гадаборшев В.Л.
  • Фролова Н.Л.
  • Авясов Р.М.
  • Дадов Э.С.
  • Арчинова В.И.
RU2141820C1
Приспособление для установки двигателя в топках с получающими возвратно-поступательное перемещение колосниками 1917
  • Р.К. Каблиц
SU1985A1
ТОПЛИВНАЯ КОМПОЗИЦИЯ 2008
  • Рейд Жаклин
RU2489477C2
ПОРШАКОВ Б.П
Газотурбинные установки
Пуговица для прикрепления ее к материи без пришивки 1921
  • Несмеянов А.Д.
SU1992A1

RU 2 278 317 C2

Авторы

Селиванов Николай Павлович

Даты

2006-06-20Публикация

2004-03-26Подача