ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ Российский патент 2006 года по МПК C22C29/02 C23C26/00 

Описание патента на изобретение RU2280093C2

Изобретение относится к области порошковой металлургии и упрочнению конструкционных материалов, работающих в условиях интенсивных механических нагрузок (абразивное изнашивание в условиях трения скольжения).

Известен электродный стержень для искрового легирования, представляющий собой прессовку из первого порошка первого компонента, содержащего кремний, а также металл, выбранный из группы, включающей Fe, CO, Ni; и по меньшей мере один элемент, выбранный из группы, включающей Ti, Zr, Hf, Cr, Та, Nb, Mo, W; и второго порошка второго компонента, содержащего по меньшей мере один элемент из группы, включающей С, В и Si (заявка РФ №2000111518, С 23 С 26/00, 2002 год).

Недостатками известного электродного материала для стержня являются: во-первых, многокомпонентность, которая препятствует получению однородного состава; во-вторых, использование самораспространяющегося высокотемпературного синтеза, что делает невозможным получение строго заданного состава из-за высоких температур и выделения газов, которое, кроме того, не дает возможности получения нулевой пористости.

Известна шихта электродного материала для электроискрового легирования, включающая карбид вольфрама, кобальт и 25-50 мас.% композиционного порошка дисперсностью ≅30 мкм, содержащего, мас.%: никель - 73; хром - 16; бор - 3,5; кремний - 4,0; железо - 3,5 (патент РФ №2129619, С 22 С 29/08, 1999 год).

Недостатками известного состава шихты являются: во-первых, сложность его получения, обусловленная многостадийностью, использованием многокомпонентной связки и ограничениями по дисперсности порошка; во-вторых, низкая микротвердость получаемого при электроискровом легировании покрытия, которая составляет 13,43-17,98 ГПА.

Таким образом, перед авторами стояла задача разработать состав шихты для изготовления электрода для электроискрового легирования, способ получения которой не отличался бы сложностью, а покрытие, полученное электроискровым легированием, характеризовалось высокой микротвердостью.

Поставленная задача решена путем использования шихты для изготовления электрода для электроискрового легирования, содержащей карбид тугоплавкого элемента и связующее на основе никеля, которая содержит в качестве карбида тугоплавкого элемента карбид бора, в качестве связующего на основе никеля - никелид титана и дополнительно - диборид титана при следующем соотношении компонентов, мас.%:

никелид титана20,0÷40,0карбид бора8,0÷20,0диборид титанаостальное.

В настоящее время из патентной и научно-технической литературы не известен состав шихты для изготовления электрода для электроискрового легирования, содержащей предлагаемые компоненты в заявляемых пределах.

Основные требования к шихте для изготовления электрода для электроискрового легирования обусловлены получением беспористого, плотного и токопроводящего электрода для получения качественного покрытия. Предлагаемый состав шихты позволяет достичь нужного результата при условии соблюдения содержания компонентов в заявляемых пределах. Использование в качестве связующего никелида титана несет дополнительную нагрузку, обеспечивая высокую электропроводность, при этом содержание никелида менее 20 мас.% ведет не только к снижению электропроводности, но и к получению пористого и непрочного электрода вследствие неравномерного распределения компонентов. Содержание никелида более 40 мас.% снижает износоустойчивость получаемого покрытия. С целью получения высокой микротвердости и износоустойчивости покрытия в составе шихты присутствует карбид бора. При содержании карбида бора менее 8 мас.% значительно снижается износоустойчивость покрытия, при его содержании более 20 мас.% наблюдается увеличение пористости и снижается механическая прочность электрода. Авторами в состав шихты введен диборид титана, который является фазой внедрения. Фазы внедрения относятся к соединениям, в которых присутствуют одновременно три типа химической связи: металлическая, ковалентная и ионная, что и обусловливает их уникальные физико-механические свойства, которые обеспечивают получения покрытия, имеющего высокую микротвердость и высокую износоустойчивость.

Предлагаемое техническое решение может быть осуществлено следующим образом. Берут шихту состава, мас.%: никелид титана - 20,0÷40,0; карбид бора - 8,0÷20,0; диборид титана - остальное. Исходные компоненты тщательно перемешивают и помещают в неэлектропроводящую форму, выполненную, например, из кварцевого стекла, алунда. Форму помещают в рабочую камеру машины конденсаторной сварки, где проводят одновременное прессование и спекание шихты при температуре 1100-1400°С, давлении... в течение 0,3-0,5 сек. Получают электрод для электроискрового легирования, который используют для получения покрытия, обладающего высокими рабочими характеристиками:

Таблица 1
Характеристики свойств (см. табл.) стали У-8 без покрытия и с покрытием предлагаемого состава.
объектизносостойкостьмикротвердость (по методу Хаварда-Брюнеля)сталь У-8 (без покрытия)10 мг/см2 за 5 сек3,6 ГПАсталь с предлагаемым покрытием2,5 мг/см2 за 5 сек18-26 ГПАПрототип-13,43-17,98 ГПА

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. Берут шихту состава: 20 г никелида титана TiNi (20 мас.%); 8 г карбида бора В4С (8 мас.%); 72 г диборида титана TiB2 (72 мас.%). Исходные компоненты тщательно перемешивают и помещают в неэлектропроводящую форму, выполненную из кварцевого стекла. Форму помещают в рабочую камеру машины конденсаторной сварки, где проводят одновременное прессование и спекание шихты при температуре 1100°С, давлении 0,15 ГПА в течение 0,3 сек. Получают электрод для электроискрового легирования, который используют для получения покрытия, обладающего следующими рабочими характеристиками: износостойкость - 2,5 мг/см2; микротвердость - 26,5 ГПА; сплошность - 100%.

Пример 2. Берут шихту состава: 40 г никелида титана TiNi3 (40 мас.%); 20 г карбида бора В4С (20 мас.%); 40 г диборида титана TiB2 (40 мас.%). Исходные компоненты тщательно перемешивают и помещают в неэлектропроводящую форму, выполненную из алунда. Форму помещают в рабочую камеру машины конденсаторной сварки, где проводят одновременное прессование и спекание шихты при температуре 1400°С, давлении 0,12 ГПА в течение 0,5 сек. Получают электрод для электроискрового легирования, который используют для получения покрытия, обладающего следующими рабочими характеристиками: износостойкость - 2,5 мг/см2; микротвердость - 18 ГПА; сплошность - 100%.

Таким образом, электрод, изготовленный из шихты предлагаемого состава, при его использовании для электроискрового легирования позволяет получить покрытие, которое характеризуется высокими рабочими характеристиками.

Похожие патенты RU2280093C2

название год авторы номер документа
Способ изготовления дисперсно-упрочненного композиционного электродного материала для электроискрового легирования и электродуговой наплавки 2016
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
  • Аверичев Олег Андреевич
  • Савельев Александр Сергеевич
RU2623942C1
Способ получения электродов для электроискрового легирования на основе композиционного материала TiB-CoB 2021
  • Столин Александр Моисеевич
  • Бажин Павел Михайлович
  • Чижиков Андрей Павлович
  • Константинов Александр Сергеевич
  • Жидович Александра Олеговна
RU2779580C1
Способ изготовления электродов для электроискрового легирования и электродуговой наплавки 2022
  • Антипов Михаил Сергеевич
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
  • Чижиков Андрей Павлович
  • Константинов Александр Сергеевич
RU2792027C1
Керамический композит и шихта для его получения 2015
  • Щербаков Владимир Андреевич
  • Грядунов Александр Николаевич
RU2622276C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2011
  • Андрианов Михаил Александрович
  • Игнатенко Олег Владимирович
  • Мальчуков Валерий Витальевич
  • Ткаченко Валерий Валерьевич
RU2525005C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С НАНОРАЗМЕРНОЙ СТРУКТУРОЙ 2010
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
  • Стельмах Любовь Семеновна
  • Щербаков Владимир Андреевич
RU2414991C1
Способ изготовления композиционных материалов на основе Ti-B-Fe, модифицированных наноразмерными частицами AIN 2020
  • Болоцкая Анастасия Вадимовна
  • Михеев Максим Валерьевич
  • Бажин Павел Михайлович
  • Столин Александр Моисеевич
RU2737185C1
ПОРОШКОВАЯ ПРОВОЛОКА 2010
  • Артемьев Александр Александрович
  • Соколов Геннадий Николаевич
  • Цурихин Сергей Николаевич
  • Лысак Владимир Ильич
RU2446930C1
ШИХТА ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ 1997
  • Николенко С.В.
  • Сундуков А.М.
  • Баранов В.А.
  • Коваленко С.В.
  • Власова Н.М.
RU2129619C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ЛИТОГО ТУГОПЛАВКОГО НЕОРГАНИЧЕСКОГО МАТЕРИАЛА В РЕЖИМЕ ГОРЕНИЯ 1992
  • Гедеванишвили Ш.В.
  • Ониашвили Г.Ш.
  • Юхвид В.И.
  • Горшков В.А.
  • Боровинская И.П.
RU2016111C1

Реферат патента 2006 года ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ

Изобретение относится к области порошковой металлургии и упрочнению конструкционных материалов, работающих в условиях интенсивных механических нагрузок (абразивное изнашивание в условиях трения скольжения). Предлагается шихта для изготовления электрода для электроискрового легирования, которая содержит в качестве карбида тугоплавкого элемента карбид бора, в качестве связующего на основе никеля - никелид титана и дополнительно - диборид титана при следующем соотношении компонентов, мас.%: никелид титана - 20,0÷40,0, карбид бора - 8,0÷20,0, диборид титана - остальное. Техническим результатом является то, что электрод, изготовленный из шихты предлагаемого состава, при его использовании для электроискрового легирования позволяет получить покрытие, которое характеризуется высокими рабочими характеристиками, в частности высокой микротвердостью. 1 табл.

Формула изобретения RU 2 280 093 C2

Шихта для изготовления электрода для электроискрового легирования, содержащая карбид тугоплавкого элемента и связующее на основе никеля, отличающаяся тем, что она содержит в качестве карбида тугоплавкого элемента карбид бора, в качестве связующего на основе никеля - никелид титана и дополнительно диборид титана при следующем соотношении компонентов, мас.%:

Никелид титана20,0÷40,0Карбид бора8,0÷20,0Диборид титанаОстальное

Документы, цитированные в отчете о поиске Патент 2006 года RU2280093C2

ШИХТА ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ 1997
  • Николенко С.В.
  • Сундуков А.М.
  • Баранов В.А.
  • Коваленко С.В.
  • Власова Н.М.
RU2129619C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1989
  • Инадзе М.В.
  • Подлесов В.В.
  • Столин А.М.
RU2007278C1
Электрододержатель для ручной дуговой сварки 1987
  • Яковцев Лев Михайлович
  • Киперник Ефим Григорьевич
  • Онищенко Анатолий Васильевич
  • Гофман Ефим Давидович
  • Карпов Олег Петрович
SU1479231A1
Пожарный двухцилиндровый насос 0
  • Александров И.Я.
SU90A1
US 4828612 A, 09.05.1989
СПОСОБ ОЧИСТКИ ТЕХНИЧЕСКОГО КРЕМНИЯ 2017
  • Кошкин Сергей Валентинович
  • Крючков Владимир Кузьмич
  • Дмитрий Константинович
  • Константин Сергеевич
RU2671357C1

RU 2 280 093 C2

Авторы

Тимощук Татьяна Афанасьевна

Купцов Сергей Гаврилович

Фоминых Максим Владимирович

Мухинов Дмитрий Владимирович

Даты

2006-07-20Публикация

2004-11-01Подача