Изобретение относится к контрольно-измерительной технике и может быть использовано в порошковой металлургии для массового контроля состава изделий из двухфазных композитов (например, твердых сплавов типа WC-Со, псевдосплавов на основе W-Cu или Au-W, пористых таблеток ядерного топлива и др.), в значительной степени определяющего оптимальные условия их эксплуатации.
Известен способ контроля состава двухфазных композитов, включающий измерение идентичных скоростей (ультразвука) УЗ в ряде изделий из двухфазных композитов переменного состава и одного из компонентов, по которым судят о составе контролируемых изделий [1]. Недостатком указанного способа является то, что для контроля состава требуются значительные временные затраты для измерения скоростей УЗ и плотностей контролируемых изделий при двух разных температурах, что малопригодно для экспрессного массового контроля.
Известен также способ контроля состава двухфазных композитов, включающий определение скоростей УЗ в ряде изделий из двухфазных композитов [2]. Однако этот способ трудоемок и малопроизводителен, поскольку связан с предварительным изготовлением ряда образцов специального форморазмера из двухфазного композита переменного состава, последующим анализом состава известным методом и измерением их модулей упругости путем статического механического нагружения в упругой области для построения градуировочной зависимости "состав - скорость УЗ".
Более близким к изобретению является способ контроля состава двухфазных композитов, включающий измерение скоростей УЗ в образце сравнения и ряде изделий из одно- и двухфазного материалов [3]. Однако этот способ не отличается высокой экспрессностью, поскольку связан с предварительным изготовлением и анализом ряда двухфазных изделий переменного состава, последующим измерением в них скорости УЗ для построения нелинейной градуировочной зависимости "состав - скорость УЗ" каждый раз, когда требуется определить изменяющийся в широком диапазоне состав других двухфазных композитов.
Перед авторами стояла задача разработать способ, позволяющий проводить массовый неразрушающий контроль фазового состава готовых изделий с необходимой точностью более просто и экспрессно.
Для реализации поставленной задачи предлагается способ контроля состава двухфазных композитов, включающий измерение идентичных скоростей УЗ в образце сравнения и ряде изделий из одно- и двухфазного материалов, отличающийся тем, что в качестве образца сравнения выбирают одно из контролируемых изделий, состав которого предварительно определяют одним из известных методов, кроме того, изготавливают изделие из компонента композита только с большей скоростью УЗ в нем и все измерения скоростей УЗ проводят в одинаковых физических условиях, после чего по адекватной им расчетной модели определяют состав двухфазных композитов при условии V1≥Vi и V1>VЭ из соотношений
где C1, С2, С2Э - объемная концентрация компонентов с большей и меньшей скоростями УЗ в контролируемых композитах и с меньшей скоростью УЗ в образце сравнения соответственно, доля;
V1, Vi, VЭ - скорости УЗ в изделиях из компонента композита с большей скоростью УЗ, в контролируемых композитах и в образце сравнения соответственно, м/с.
Скорость распространения идентичных УЗ колебаний (например, продольных) в изделиях из двухфазного композита зависит от их состава (пористости) и физических условий измерения: температура, диапазон частот колебаний, соотношение длины волны и размеров зерен и частиц фаз и др. При возбуждении и регистрации колебаний плотных двухфазных изделий в одинаковых физических условиях скорость УЗ может служить мерой их состава. В аналоге концентрацию каждой фазы определяют по величинам плотностей и температурных коэффициентов скоростей УЗ в одно- и двухфазном изделиях, в прототипе - по градуировочной зависимости "состав - скорость УЗ". В предлагаемом способе определение концентрации каждой фазы в двухфазном композите основано на законах сохранения импульса и энергии масс единичного объема при распространении фронта волны через границу раздела фаз контролируемого изделия, образца сравнения и изделия из компонента композита с большей скоростью УЗ. В связи с изложенным скорость УЗ измеряют в одинаковых физических условиях (например, при нормальных), что необходимо и достаточно для определения состава при условии V1≥Vi и V1>VЭ из соотношений:
где C1, С2, С2Э - объемная концентрация компонентов с большей и меньшей скоростями УЗ в контролируемых композитах и с меньшей скоростью УЗ в образце сравнения соответственно, доля;
V1, Vi, VЭ - скорости УЗ в изделиях из компонента композита с большей скоростью УЗ, в контролируемых композитах и в образце сравнения соответственно, м/с.
Использование в качестве образца сравнения одного из контролируемых изделий и предварительное определение его состава одним из известных способов (например, рентгеновским) освобождает каждый раз при контроле двухфазных композитов из других компонентов от необходимости предварительного изготовления и анализа ряда изделий из компонента с меньшей скоростью УЗ и из композитов переменного состава и последующего измерения скоростей УЗ для построения нелинейной градуировочной зависимости "состав - скорость УЗ", что существенно упрощает известный способ, а точность контроля остается на уровне известного способа.
Кроме того, предлагаемый способ может быть автоматизирован и применен непосредственно в технологической цепочке, что приведет к дальнейшему повышению экспрессности контроля.
Следует отметить, что при контроле состава изотропных изделий не играет роли мода колебаний и/или направление распространения волны, при наличии же анизотропии (структурной неоднородности) необходимо соблюдать одинаковые условия прозвучивания контролируемых изделий, образца сравнения и изделия из компонента с большей скоростью УЗ.
Далее, предлагаемый способ имеет в частном случае дополнительную возможность определения пористости, когда вместо материальной фазы 2 будут поры с размерами, значительно меньшими используемой длины волны. При этом расчетная формула (1) упрощается и выглядит следующим образом:
где Р - объемная концентрация пористости, доля; Vo, Vp - скорость УЗ в плотном и пористых изделиях соответственно, м/с.
Способ осуществляют следующим образом. Из партии контролируемых изделий произвольно выбирают образец сравнения и предварительно определяют его состав известным (например, рентгеновским) способом. Из компонента композита с большей скоростью УЗ изготавливают изделие простой формы (например, цилиндрической). Затем проводят в одинаковых физических условиях измерения идентичных скоростей УЗ в образце сравнения, контролируемых изделиях и однофазном изделии с большей скоростью УЗ, после чего концентрацию фаз (или пористости) определяют из приведенных соотношений (1) или (2).
Примеры конкретного выполнения.
Отметим, что в изделиях могут быть возбуждены и измерены любые упругие колебания: продольные, изгибные и др. При резонансных измерениях возможна регистрация как частоты, так и периода колебаний, поскольку они связаны обратно пропорциональной зависимостью. Импульсные методы позволяют непосредственно измерять скорость распространения УЗ. При этом для реализации предлагаемого способа необходимо использовать одинаковые физические условия измерений: по моде и частоте колебаний, температуре, напряженно-деформированному состоянию, соотношению длин волн (λ) и размеров зерен и частиц фаз (d), соответствию условий измерения и используемой расчетной модели (в нашем случае λ≫d) и др.
1. В таблице 1 представлены известные результаты [3] определения резонансным методом модулей упругости Е и G изделий из твердых сплавов на основе WC-Со и компонентов WC и Со. Из приведенных в [3] результатов по составу (в объемных и весовых %), определенному рентгеновским методом с погрешностью ±0.15% следует, что связующая фаза имеет плотность, большую, чем чистый Со (по разным источникам - 8.65...8.79 г/см3), что обычно связывают с некоторой растворимостью W в Со. Продольная и поперечная скорости УЗ были рассчитаны из данных по Е и G и известным плотностям WC (15.65 г/см3) и твердых растворов Co(W) (8.79...9.6) г/см3. В качестве образцов сравнения выбрали изделия с концентрацией С2Э(рентген.)=20.8 об.% Co(W) при использовании продольных колебаний и С2Э(рентген.)=19.5 об.% Co(W) - при поперечных колебаниях. Затем по соотношению (1) для идентичных колебаний с учетом, что V1=Vwc и Vi=VWC-Co при условии V1>Vi, и V1>VЭ определяют состав в контролируемых твердых сплавах. Как видно из таблицы 1, результаты определения состава твердых сплавов предлагаемым и рентгеновским способами хорошо согласуются, поскольку плотность связующей фазы в выбранных образцах сравнения близка к среднему значению плотности Co(W) контролируемых изделий переменного состава.
Определение состава твердых сплавов WC-Со (резонансный метод)
V1(прод.)=Vwc=6711 м/с; Еэ=(56.4...56.3)103 кг/мм2; Vi(крут.)=Vwc=4342 м/с; Gэ=23.4·103 кг/мм2.
2. В таблице 2 представлены известные результаты [4] по плотности композитов WC-Co и импульсных измерений продольных скоростей УЗ в них. Для оценки Vwc(прод.) и VCO(прод.) в компонентах использовали экстраполяцию приведенных в работе [4] корреляционных зависимостей различных физико-механических свойств от скоростей УЗ. В работе [4] состав твердых сплавов WC-Co(W), определенный по весу шихтовых компонентов WC и Со, находится в пределах ВК6...ВК15. Однако шихтовый состав в [4] не соответствует реальному составу спеченных изделий, что следует из значительного разброса измеренных скоростей УЗ для одного состава по шихте: так, для ВК6 скорости УЗ составляют диапазон (6760...6842) м/с, что можно объяснить только изменением состава связующей фазы во время технологического процесса. В связи с этим для сравнения с расчетом состава предлагаемым способом дополнительно определяют состав композита по формуле для плотности двухфазных смесей:
где С2 - объемная концентрация Co(W), доля; ρWC, ρCo(W), ρWC-Co(W) - плотность компонентов WC и Co(W) и композита WC-Co(W), г/см3.
Из многочисленных данных [4] выбирают образцы сравнения с плотностями композита 14.6, 14.43 и 14.72 г/см3, объемной концентрацией Co(W), равной 15.6, 20.0 и 14.2%, плотностью связующей фазы 9.14, 9.54 и 9.1 г/см3 соответственно.
Из таблицы 2 видно, что расхождение результатов расчета состава предлагаемым способом и по формуле для плотности двухфазных смесей не превышает 10...12%, тогда как их отклонение от состава по шихте достигает в отдельных случаях 30...33%.
Определение состава твердых сплавов WC (импульсный метод)
BKi вес.%/об.%
ρЭ=14,6; 14,43 и 14,72 г/см3.
3. В заключительном примере рассмотрим возможность применения предлагаемого способа определения состава псевдосплавов Au - W и W - Cu, необходимые характеристики для реализации которого приведены в работах [5, 2]. В связи с наличием пористости и анизотропии в композитах Au-W предварительно по формуле (2) производят нормировку измеренных скоростей Vр на беспористое состояние и определяют Vo композитов. Причем скорость УЗ в компонентах W и Au и в композитах Au-W определяют импульсными методами [5] с использованием продольных и поперечных волн.
Анизотропию скоростей УЗ в композитах Au-W в результате структурной неоднородности пор и фазовых составляющих учитывают в фазовом составе образца сравнения, используя значение C2Э=55,9 об.% для продольных волн и С2Э=38,5 об.% - для поперечных.
Для расчета скоростей звука в компонентах W и Cu и композитах W-Cu используют приведенные в работе [2] модули Юнга, состав композитов W-Cu и известные данные по плотности W (19,25 г/см3 ) и Cu (8,93 г/см3). В таблице 3 представлены необходимые для реализации предлагаемого способа данные и проведено сравнение результатов определения состава композитов предлагаемым и известным способами.
Определение состава композитов Au-W и W-Cu
кг/мм2
Сопоставление результатов определения (см. табл.3) состава предлагаемым и известными способами показывает их расхождение в пределах ±5% во всех случаях, кроме случая определения анизотропного композита Au-W с помощью поперечных волн (расхождение не превышает ˜10%).
Таким образом, для контроля состава изделий из двухфазных композитов необходимо и достаточно измерение идентичных скоростей УЗ в одинаковых физических условиях в компоненте композита с большей скоростью УЗ, в контролируемых композитах, а также в произвольно выбранном из контролируемой партии образце сравнения, состав которого предварительно определяют одним из известных методов. А существующие в настоящее время технические средства с использованием заявляемого способа позволяют проводить массовый неразрушающий контроль однородности состава готовых изделий с необходимой точностью более просто и экспрессно.
Источники информации
1. SU, авторское свидетельство, 1026045, G 01 N 29/00, 1983 (аналог).
2. Effekt of composition and dispersed - phase particle-size distribution on the static elastic moduli of W-Cu composite materials, R.H.Crock, Proc. Amer. Soc. Test. Mater., v.63, 1963, p.605-612 (аналог).
3. A systematic investigation of elastic moduli of WC-Co alloys. H.Doi, Y.Fujiwara, K.Miyake et.al. Metal. Trans. V.1, 1970, №5, p.1417-1425 (прототип).
4. Pouziti ultrasvuku pri vyzkumu vlastnosti slinutych karbidu. V.Cech, R.Regazzo, "Z Mezinar. Konf. Prask. Met. CSSR: PM' 87", /Pardubice, 22-24 zari, 1987/, p.205-210, Sb. Pr. D. Sn. J., 1987.
5. Ultrasonic velocity measurements of Au-W composites. - D.K.Mak, R.B.Steinfl, Nondestr. Test.Eval., vol.5, 1989, p.39-48.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АКУСТИЧЕСКОГО КОНТРОЛЯ СОСТАВА ИЗДЕЛИЙ ИЗ ДВУХФАЗНОГО КОМПОЗИТА | 2004 |
|
RU2280250C1 |
СПОСОБ АКУСТИЧЕСКОГО КОНТРОЛЯ СОСТАВА ОДНОТИПНЫХ ИЗДЕЛИЙ ИЗ ДВУХФАЗНОГО МАТЕРИАЛА | 1993 |
|
RU2111484C1 |
СПОСОБ КОНТРОЛЯ СОСТАВА ОДНОТИПНЫХ ИЗДЕЛИЙ ИЗ ДВУХФАЗНОГО МАТЕРИАЛА | 1993 |
|
RU2111483C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛ-ПОЛИМЕРНОГО КОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ РАДИОТЕХНИЧЕСКОЙ АППАРАТУРЫ | 2012 |
|
RU2506224C1 |
СПОСОБ ПОЛУЧЕНИЯ ТУГОПЛАВКОГО КОМПОЗИЦИОННОГО ИЗДЕЛИЯ | 1997 |
|
RU2130441C1 |
СПОСОБ ОПТИМИЗАЦИИ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ТВЕРДОГО МАТЕРИАЛА | 2000 |
|
RU2180742C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ С УГЛЕРОДСОДЕРЖАЩЕЙ ОСНОВОЙ | 2011 |
|
RU2458893C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ТВЕРДЫХ WC-Co СПЛАВОВ | 2011 |
|
RU2465993C2 |
Способ ультразвукового контроля пористости порошковых изделий | 1990 |
|
SU1756814A1 |
Способ получения многослойных высокоэнтропийных композитных покрытий | 2021 |
|
RU2760316C1 |
Изобретение относится к контрольно-измерительной технике и может быть использовано в материаловедении для массового контроля состава изделий из двухфазных композитов. Техническим результатом изобретения является проведение массового неразрушающего контроля фазового состава готовых изделий с необходимой точностью более просто и экспрессно. Способ акустического контроля состава изделий из двухфазного композита заключается в выборе образца сравнения из партии контролируемых изделий и предварительном определении его состава известным методом, идентичном измерении скоростей ультразвука (УЗ) в образце сравнения и в ряде изделий из компонента композита с большей скоростью УЗ в нем и из двухфазных композитов. Измерение скорости УЗ проводят импульсным методом в одинаковых физических условиях. Состав двухфазных композитов определяют при условии V1≥Vi и V1>VЭ, из соотношений: и С1=1-С2, где С1, С2, С2Э - объемная концентрация компонентов с большей и меньшей скоростями УЗ в контролируемых композитах и с меньшей скоростью УЗ в образце сравнения соответственно, доля; V1, Vi, VЭ - скорости УЗ в изделиях из компонента композита с большей скоростью УЗ, в контролируемых композитах и в образце сравнения соответственно, м/с. 3 табл.
Способ контроля состава двухфазных композитов, включающий выбор образца сравнения из партии контролируемых изделий и определение его состава известным методом, измерение идентичных скоростей УЗ в образце сравнения и в ряде изделий из компонента композита с большей скоростью УЗ в нем и из двухфазных композитов, отличающийся тем, что измерения скоростей проводят импульсным методом в одинаковых физических условиях, после чего по адекватной им расчетной модели определяют состав двухфазных композитов при условии V1≥Vi, и V1>VЭ из соотношений
где С1, С2, С2Э - объемная концентрация компонентов с большей и меньшей скоростями УЗ в контролируемых композитах и с меньшей скоростью УЗ в образце сравнения соответственно, доля;
V1, Vi, VЭ - скорости УЗ в изделиях из компонента композита с большей скоростью УЗ, в контролируемых композитах и в образце сравнения соответственно, м/с.
СПОСОБ КОНТРОЛЯ СОСТАВА ОДНОТИПНЫХ ИЗДЕЛИЙ ИЗ ДВУХФАЗНОГО МАТЕРИАЛА | 1993 |
|
RU2111483C1 |
Устройство для ультразвуковогоизМЕРЕНия КОНцЕНТРАции КОМпОНЕНТОВВ СлОжНыХ пОлиМЕРНыХ КОМпОзицияХ | 1979 |
|
SU815618A1 |
Способ анализа бинарной смеси твердых компонентов | 1981 |
|
SU1026045A1 |
Способ акустического определения физических характеристик спекаемого материала | 1991 |
|
SU1817017A1 |
Ультразвуковой способ определения концентрации примесей в высокочистых металлах | 1982 |
|
SU1019309A1 |
Авторы
Даты
2006-07-20—Публикация
2004-11-23—Подача