Изобретение относится к области технологии переработки смесей азотной кислоты и оксидов азота, содержащих в качестве ингибитора коррозии фтористый водород, преимущественно окислителей жидких ракетных топлив.
Необходимость переработки данных смесей вызвана большими запасами окислителей, в том числе не соответствующих техническим требованиям для их применения по назначению. Переработка окислителей позволяет получить продукционную азотную кислоту, используемую, например, в производствах органических нитросоединений, взрывчатых материалов, и, кроме того, уменьшить экологическую опасность, которая существует в районах длительного хранения окислителей.
Известен способ переработки смесей азотной кислоты и оксидов азота (патент на изобретение N 2177445 по МПК C 01 В 21/46, C 06 В 47/04), преимущественно окислителей жидких ракетных топлив, ингибированных фтористым водородом, включающий две основные стадии:
- обработку смесей кремнийсодержащим соединением, предпочтительно гранулированным силикагелем (SiO2), с получением газообразного тетрафторида кремния (SiF4);
- очистку отходящих газов от тетрафторида кремния с получением гексафторсиликата натрия (Na2SiF6).
Обработку смесей азотной кислоты и оксидов азота осуществляют в реакторе с мешалкой и рубашкой для нагрева и охлаждения. Этот способ выбран в качестве прототипа.
Согласно вышеуказанному способу в процессе переработки смесей азотной кислоты и оксидов азота фтористый водород связывается силикагелем в легколетучий тетрафторид кремния, отгоняемый из реакционной массы с оксидами азота при температуре 75°С:
Оксиды азота затем конденсируют, а несконденсированные газы, содержащие 90÷92% тетрафторида кремния и 3÷5% оксидов азота, поглощают водным раствором азотной кислоты и нитрата натрия в хемосорбционном скруббере при 25÷35°С с получением нерастворимых гексафторсиликата натрия (Na2SiF6) и кремнегеля:
Образующийся осадок отделяется на вакуум-воронке и поступает на утилизацию, а фильтрат после внесения нового количества нитрата натрия вновь поступает на орошение скруббера.
В процессе промышленной эксплуатации были выявлены следующие недостатки известного способа:
- очистка отходящих газов от тетрафторида кремния требует постоянной работы насоса, подающего на форсунки скруббера поглотительный раствор под давлением 0,3÷0,4 МПа, и периодической регенерации поглотительного раствора. В то же время во избежание забивки форсунок образующийся осадок необходимо отделять от поглотительного раствора, подаваемого на орошение скруббера. Для этого в контуре орошения установлен отстойник большой емкости. Таким образом, стадия очистки отходящих газов представляет собой сложную систему, неисправность которой является причиной периодических остановок всей установки переработки окислителей;
- требуемая степень очистки исходной смеси от фтористого водорода достигается только при большом избытке силикагеля, в 55 раз превышающем стехиометрически необходимое количество по реакции (1). Это является причиной низкой производительности процесса, поскольку силикагель занимает до 40% реакционного объема;
- использование силикагеля в качестве кремнийсодержащего реагента требует создания специального реактора с диффузором-сепаратором, исключающим механическое измельчение гранул, поскольку появление тонкодисперсного силикагеля в продукционной азотной кислоте недопустимо, а его отделение от очищенной смеси представляет сложную проблему в силу малой разности плотностей твердой и жидкой фаз;
- необходимость поддержания высокой температуры (75°С) в реакторах вызывает повышенный коррозионный износ оборудования.
Технической задачей разработки предлагаемого способа является исключение перечисленных недостатков известного способа путем перехода на новый реагент, позволяющий непосредственно связывать фтористый водород не в газообразное, а в кристаллическое соединение.
Технический результат достигается тем, что в качестве кремнийсодержащего реагента используются силикаты щелочных металлов, предпочтительно натриевое жидкое стекло (Na2SiO3), поскольку наличие катиона в реакционной массе позволяет связать фтористый водород в нерастворимую соль (гексафторсиликат натрия):
Таким образом, газовыделения при этом не происходит, и стадии очистки отходящих газов в предлагаемом способе не требуется. С точки зрения кинетики процесса, наиболее целесообразно использование силикатов щелочных металлов в виде водных растворов (так называемого жидкого стекла).
Для связывания фтористого водорода в гексафторсиликат металла достаточно жидкого стекла в количестве, близком к стехиометрическому по реакции (4). Кроме того, переход на жидкое стекло дополнительно позволяет осуществлять дозировку кремнийсодержащего реагента в непрерывном режиме вместе с исходной смесью. При этом уменьшение количества кремнийсодержащего реагента в реакционной массе по сравнению с известным методом позволяет увеличить производительность реактора не менее чем на 20%. По предлагаемому способу в качестве реактора может использоваться емкостное оборудование с мешалкой в обычном исполнении.
Использование в качестве реагента силикатов щелочных металлов позволяет вести технологический процесс в одну основную стадию в широком температурном интервале от 20°С до точки кипения смеси (45÷55°С в зависимости от содержания оксидов азота). Оптимальной температурой ведения процесса является 40÷45°С, что сопровождается низким коррозионным износом оборудования в сочетании с высокой производительностью по отношению к прототипу.
Примеры реализации заявляемого технического решения в сравнении с прототипом приведены в таблице.
Достигаемая остаточная концентрация фторид-иона в очищенной смеси во всех приведенных случаях составляет <0,001% масс.
Как видно из таблицы, по предлагаемому способу значительно сокращается количество реагента по отношению к стехиометрическому, повышается производительность установки, а оптимальная температура ведения процесса 40÷45°С способствует уменьшению коррозионного износа металла.
Получаемая суспензия гексафторсиликата металла в смеси азотной кислоты с оксидами азота разделяется известным методом с последующей фильтрацией. Очищенная от фтористого водорода и от твердой фазы смесь поступает на дальнейшую переработку известным способом путем разделения смеси в колоннах отбелки, абсорбции оксидов азота и концентрирования абсорбционной азотной кислоты, смешения концентрированной азотной кислоты с кубовой кислотой из колонны отбелки с получением продукционной азотной кислоты, а гексафторсиликат металла поступает на промывку и утилизацию.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ СМЕСЕЙ АЗОТНОЙ КИСЛОТЫ И ОКСИДОВ АЗОТА | 1999 |
|
RU2177445C2 |
СПОСОБ ПЕРЕРАБОТКИ СМЕСИ АЗОТНОЙ КИСЛОТЫ И ОКСИДОВ АЗОТА И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2264979C1 |
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНОВОГО КОНЦЕНТРАТА | 2006 |
|
RU2311345C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДОВ АКТИНИДНЫХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2394770C2 |
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА | 2008 |
|
RU2382425C1 |
СПОСОБ ФТОРИРОВАНИЯ ОКСИДОВ АКТИНИДНЫХ ЭЛЕМЕНТОВ ДО ГЕКСАФТОРИДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2356841C2 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ И ЕГО СОЕДИНЕНИЙ И ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2525415C1 |
СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРИДА АЗОТА | 2006 |
|
RU2317251C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАФТОРИДА УРАНА | 2015 |
|
RU2601477C1 |
СПОСОБ РАСТВОРЕНИЯ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА | 2016 |
|
RU2626763C1 |
Изобретение относится к области технологии переработки смесей азотной кислоты и оксидов азота, содержащих в качестве ингибитора коррозии фтористый водород, преимущественно окислителей жидких ракетных топлив. Способ очистки смесей азотной кислоты и оксидов азота, ингибированных фтористым водородом, с помощью кремнийсодержащего соединения, заключается в том, что в качестве кремнийсодержащего соединения используют силикат щелочного металла, предпочтительно натриевое жидкое стекло, при этом фтористый водород переводят непосредственно в соответствующий гексафторсиликат металла, нерастворимый в смеси азотной кислоты и оксидов азота, процесс ведут в одну стадию при температуре от 20°С до точки кипения смеси в зависимости от содержания оксидов азота, предпочтительно в интервале температур 40÷45°С, а кремнийсодержащее соединение дозируют в смесь в количестве, близком к стехиометрическому. Способ позволяет повысить производительность процесса и уменьшить коррозионный износ оборудования. 1 табл.
Способ очистки смесей азотной кислоты и оксидов азота, ингибированных фтористым водородом, с помощью кремнийсодержащего соединения, отличающийся тем, что в качестве кремнийсодержащего соединения используют силикат щелочного металла, предпочтительно натриевое жидкое стекло, при этом фтористый водород переводят непосредственно в соответствующий гексафторсиликат металла, не растворимый в смеси азотной кислоты и оксидов азота, процесс ведут в одну стадию при температуре от 20°С до точки кипения смеси в зависимости от содержания оксидов азота, предпочтительно в интервале температур 40÷45°С, а кремнийсодержащее соединение дозируют в смесь в количестве, близком к стехиометрическому.
СПОСОБ ПЕРЕРАБОТКИ СМЕСЕЙ АЗОТНОЙ КИСЛОТЫ И ОКСИДОВ АЗОТА | 1999 |
|
RU2177445C2 |
Способ обезвреживания фторсодержащих сточных вод | 1990 |
|
SU1807014A1 |
Способ обесфторивания азотнофосфорнокислого раствора | 1986 |
|
SU1366475A1 |
Способ очистки сточных вод от фтора | 1990 |
|
SU1775372A1 |
СПОСОБ УТИЛИЗАЦИИ НИТРОСМЕСЕЙ | 1996 |
|
RU2104923C1 |
СПОСОБ ПЕРЕРАБОТКИ НИТРОСМЕСЕЙ | 1999 |
|
RU2162072C1 |
СПОСОБ ТЕРАПЕВТИЧЕСКОГО ИЛИ ПРОФИЛАКТИЧЕСКОГО ЛЕЧЕНИЯ СТРЕПТОКОККОВЫХ ИНФЕКЦИЙ (ВАРИАНТЫ) И КОМПОЗИЦИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В НЕМ (ВАРИАНТЫ), ЛИЗИНОВЫЙ ФЕРМЕНТ, АССОЦИИРОВАННЫЙ С ФАГОМ СТРЕПТОКОККОВ ГРУППЫ С,- АКТИВНЫЙ АГЕНТ ФАРМАЦЕВТИЧЕСКОЙ КОМПОЗИЦИИ | 1999 |
|
RU2239451C2 |
Привод поворотного стола | 1987 |
|
SU1458132A1 |
Авторы
Даты
2006-07-27—Публикация
2004-11-29—Подача